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On Baer filters of bounded distributive lattices

Shahabaddin Ebrahimi Atani

Abstract. Following the concept of Baer ideals, we define Baer filters and we will make
an intensive investigate the basic properties and possible structures of these filters.

1. Introduction

All lattices considered in this paper are assumed to have a least element
denoted by 0 and a greatest element denoted by 1, in other words they are
bounded.

The notion of an order plays an important role not only throughout
mathematics but also in adjacent such as logic, computer science and engi-
neering and, hence, ought to be in the literature. Filters of lattices play a
central role in the structure theory and are useful for many purposes. The
main aim of this article is that of extending some results obtained for ring
theory to the theory of lattices. The main difficulty is figuring out what
additional hypotheses the lattice or filter must satisfy to get similar results.
Nevertheless, growing interest in developing the algebraic theory of lattices
can be found in several papers and books (see for example [2, 3, 4, 7, 8, 9,
10]).

An ideal I of a commutative ring R is called a d-ideal provided that for
each a ∈ I and x ∈ R, Ann(a) ⊆ Ann(x) implies that x ∈ I. The concept of
d-ideals has been studied by several authors in different forms and by differ-
ent names. The notion of d-ideals in a commutative ring was introduced by
Speed [17] who called them Baer ideals. These ideals were also put to good
use in 1972 by Evans [5] when characterizing commutative rings that are
finite direct sums of integral domains. In [11], Jayaram introduced fd-ideals
(as strongly Baer ideals) and 0-ideals in reduced rings and characterize quasi
regular and von Neumann regular rings. In [13], Khabazian, Safaeeyan and
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Vedadi extended the concept of d-ideals to the category of modules and
investigated the modules for which their submodules are d-submodules. In
[16], Safaeeyan and Taherifar studied d-ideals and fd-ideals in general rings,
and not just the reduced ones. In [1], Anebri, Kim and Mahdou investi-
gated the concepts of d-submodules, fd-submodules and 0-submodules of a
module over a commutative ring. In [15], Mason investigated the concepts
of z-ideals of a commutative ring.

Let £ be a bounded distributive lattice. We say that a subset S ⊆ £ is
join closed if 0 ∈ S and s1 ∨ s2 ∈ S for all s1, s2 ∈ S (clearly, if p is a prime
filter of £, then £\p is a join closed subset of £). If F,G are filters of £ and
y ∈ £, then we define the filter quotients (G :£ F ) = {x ∈ £ : x ∨ F ⊆ G}
and ({1} :£ y) = (1 :£ y) = {z ∈ £ : z ∨ y = 1}; clearly these are
another filters of £ and G ⊆ (G :£ F ). A filter F is said to be a Baer
filter (resp. strongly Baer filter) if (1 :£ f) ⊆ (1 :£ x) for some f ∈ F
and x ∈ £ implies that x ∈ F (resp. (1 :£ G) ⊆ (1 :£ x) for some finite
subset G of F and x ∈ £ implies that x ∈ F ). F is said to be a 1-filter if
F = {1}S(£) = {x ∈ £ : x ∨ s = 1 for some s ∈ S} for some join closed
subset S of £. For each element x in a lattice £, the intersection of all
minimal prime filters in £ containing x is denoted by Px, and a filter F in
£ is called a z0-filter if Px ⊆ F , for all x ∈ F . A filter F of £ is a strongly
z0-filter if PA ⊆ F for each finite subset A of F . For each element x in a
lattice £, the intersection of all maximal filters in £ containing x is denoted
by Mx, and a filter F in £ is called a z-filter if Mx ⊆ F , for all x ∈ F . In
the present paper, we are interested in investigating Baer filters to use other
notions of Baer, and associate which exist in the literature as laid forth in
[1, 11, 15, 16].

Our objective in this paper is to extend the notion of Baer property
in commutative rings to Baer property in the lattices, and to investigate
the relations between Baer filters, Strongly Baer filters, z0-filters, strongly
z0-filters and z-filters. Among many results in this paper, the first, intro-
ductional section contains elementatary observations needed later on.

In Section 2, we give basic properties of Baer filters. In particular, we
show that the class of lattices for which their Baer filters, strongly Baer
filters, z0-filters and strongly z0-filters are the same (see Proposition 2.4,
Prposition 2.19 and Theorem 2.20). Also, we investigate Baer filters and
specify some distinguished classes of Baer filters in a lattice. For example,
1-filters, the filter (F :£ G) where F is a Baer filter and G is a filter of £ (so
(1 :£ H) for every filter H of £), direct meets and all minimal prime filters



On Baer filters of bounded distributive lattices 3

are Baer filters (see Lemma 2.5, Lemma 2.6, Proposition 2.7, Proposition
2.9 and Proposition 2.12). In this section we observe that in a lattice £, If
p is a prime filter of a lattice £, then either p is a Baer filter or the maximal
Baer filters contained in p are prime Baer filters (see Theorem 2.13).

Section 3 is dedicated to the study of z-filters. We show that every
minimal prime filter in a semisimple lattice £ is a z-filter (see Theorem
3.4). We also prove in Theorem 3.5 that if F is a z-filter of £, then every
p ∈ min(F ) is a z-filter. Here, we observe that in a lattice £, Baer filters
and z-filters are not coincide generally (see Example 3.7). The remaining
part of this section is mainly devoted to investigation of lattices £ such
that when the class of Baer filters is contained in the class of z-filters (see
Theorem 3.8).

Section 4 concentrates to the relation between Baer filters and prime
filters. We prove in Theorem 4.4 that every prime filter of £ is a Baer
filter if and only if every filter of £ is a Baer filter. We also show that £
is a classical lattice such that for every finitely generated filter F ⊆ I(£),
(1 :£ F ) 6= {1} if and only if every maximal filter of £ is a Baer filter (see
Theorem 4.5). Moreover, we prove that in a lattice £, every prime Baer
filter of £ is either a minimal prime or a maximal filter if and only if for
each maximal filter m of £ and each m,n ∈m, there exists a finite subset
A ⊆ (1 :£ m) and d /∈ m such that (1 :£ T (A ∪ {m})) ⊆ (1 :£ d ∨ n) (see
Theorem 4.6). Finally, we will show that every prime Baer filter of £ is
a minimal prime filter if and only if for each a ∈ £, there exists a finitely
generated filter F such that F ⊆ (1 :£ a) and (1 :£ T (F ∪ {a})) = {1} (see
Theorem 4.7).

Let us recall some notions and notations. By a lattice we mean a poset
(£,6) in which every couple elements x, y has a g.l.b. (called the meet of
x and y, and written x ∧ y) and a l.u.b. (called the join of x and y, and
written x ∨ y). A lattice £ is complete when each of its subsets X has a
l.u.b. and a g.l.b. in £. Setting X = £, we see that any nonvoid complete
lattice contains a least element 0 and greatest element 1 (in this case, we
say that £ is a lattice with 0 and 1). A lattice £ is called a distributive
lattice if (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for all a, b, c in £ (equivalently, £ is
distributive if (a∧ b)∨ c = (a∨ c)∧ (b∨ c) for all a, b, c in £). A non-empty
subset F of a lattice £ is called a filter, if for a ∈ F , b ∈ £, a 6 b implies
b ∈ F , and x∧ y ∈ F for all x, y ∈ F (so if £ is a lattice with 1, then 1 ∈ F
and {1} is a filter of £). A proper filter F of £ is called prime if x∨ y ∈ F ,
then x ∈ F or y ∈ F . A proper filter F of £ is said to be maximal if G is a
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filter in £ with F $ G, then G = £. The radical of £, denoted by Rad(£),
is the intersection of all maximal filters of £.

Let A be subset of a lattice £. Then the filter generated by A, denoted
by T (A), is the intersection of all filters that is containing A. A filter F is
called finitely generated if there is a finite subset A of F such that F = T (A).
A lattice £ with 1 is called £-domain if a ∨ b = 1 (a, b ∈ £), then a = 1 or
b = 1. First we need the following lemma proved in [2, 4, 6, 8, 9].

Lemma 1.1. Let £ be a lattice.
(1) A non-empty subset F of £ is a filter of £ if and only if x∨ z ∈ F and

x ∧ y ∈ F for all x, y ∈ F , z ∈ £. Moreover, since x = x ∨ (x ∧ y),
y = y∨(x∧y) and F is a filter, x∧y ∈ F gives x, y ∈ F for all x, y ∈ £.

(2) If F1, . . . , Fn are filters of £ and a ∈ £, then∨n
i=1 Fi = {

∨n
i=1 ai : ai ∈ Fi} and a ∨ Fi = {a ∨ ai : ai ∈ Fi}

are filters of £ and
∨n

i=1 Fi =
⋂n

i=1 Fi.
(3) Let A be an arbitrary non-empty subset of £. Then

T (A) = {x ∈ £ : a1 ∧ a2 ∧ · · · ∧ an 6 x for some ai ∈ A (1 6 i 6 n)}.
Moreover, if F is a filter and A is a subset of £ with A ⊆ F , then
T (A) ⊆ F , T (F ) = F and T (T (A)) = T (A).

(4) If £ is distributive, F,G are filters of £, and y ∈ £, then
(G :£ F ) = {x ∈ £ : x ∨ F ⊆ G},
(F :£ T ({y})) = (F :£ y) = {a ∈ £ : a ∨ y ∈ F} and
({1} :£ y) = (1 :£ y) = {z ∈ £ : z ∨ y = 1} are filters of £.

(5) If {Fi}i∈∆ is a chain of filters of £, then
⋃

i∈∆ Fi is a filter of £.
(6) If £ is distributive, G,F1, · · · , Fn are filters of £, then

G ∨ (
∧n

i=1 Fi) =
∧n

i=1(G ∨ Fi).
(7) If £ is distributive and F1, . . . , Fn are filters of £, then for each i∧n

i=1 Fi = {∧ni=1ai : ai ∈ Fi} is a filter of £ and Fi ⊆
∧n

i=1 Fi.

2. Basic properties of Baer filters

In this section, we collect some basic properties concerning Baer filters and
strongly Baer filters and then investigate the relationship among these fil-
ters. Throughout this paper we shall assume, unless otherwise stated, that
£ is a bounded distributive lattice. The proof of the following lemma can be
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found in [6] (with some different proof and notions), but we give the details
for convenience.

Lemma 2.1. For the lattice £ the following statements hold:
(1) If F is a proper filter of £ with F 6= {1}, then F contained in a

maximal filter of £;
(2) Every Maximal filter of £ is a prime filter.

Proof. (1). Since the filter F is proper, Ω = {G : G is a filter of £ with F ⊆
G,G 6= £} 6= ∅. Moreover, (Ω,⊆) is a partial order. Clearly, Ω is closed
under taking unions of chains and so the result follows by Zorn’s Lemma.

(2). Assume that m is a maximal filter of £ and let a ∨ b ∈ m with
a, b /∈ m. Then £ = m ∧ T ({a}) which implies that 0 = m ∧ (a ∨ s) for
some m ∈ m and s ∈ £. Then m is a filter gives b = b ∨ (m ∧ (a ∨ s)) =
(b ∨m) ∧ (b ∨ a ∨ s) ∈m which is impossible. Thus m is prime.

Lemma 2.2. Assume that F is a filter of £ and let S be a join closed
subset of £. Then FS(£) = {x ∈ £ : x ∨ s ∈ F for some s ∈ S} is a filter
of £ with F ⊆ FS(£).

Proof. If f ∈ F , then f∨s ∈ F (s ∈ S) gives F ⊆ FS(£). Let x1, x2 ∈ FS(L)
and t ∈ £. Then x1 ∨ s1, x2 ∨ s2 ∈ F for some s1, s2 ∈ S (so s1 ∨ s2 ∈ S)
gives (x1 ∧ x2) ∨ (s1 ∨ s2), (x1 ∨ t) ∨ s1 ∈ F ; hence x1 ∧ x2, x1 ∨ t ∈ FS(£),
as needed.

We remind the reader with the following definition.

Definition 2.3. Let F be a filter of £.
(1) F is said to be a Baer filter if (1 :£ f) ⊆ (1 :£ x) for some f ∈ F

and x ∈ £ implies that x ∈ F .
(2) F is said to be a strongly Baer filter if (1 :£ G) ⊆ (1 :£ x) for some

finite subset G of F and x ∈ £ implies that x ∈ F .
(3) F is said to be a 1-filter if F = {1}S(£) for some join closed subset

S of £.

It can be easily seen that every strongly Baer filter is a Baer filter. It
can also be verified that arbitrary intersection of Baer fiters is again a Baer
filter. The next result determines the class of lattices for which their Baer
filters and strongly Baer filters are the same.
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Proposition 2.4. A filter F of a lattice £ is a Baer filter if and only if F
is a strongly Baer filter.

Proof. It is enough to show that if F is Baer filter, then F is a strongly Baer
filter. Let (1 :£ A) ⊆ (1 :£ x) for some finite subset A = {a1, a2, · · · , ak}
of F (so

∧k
i=1 ai ∈ F , as F is a filter) and x ∈ £. Then (1 :£

∧k
i=1 ai) =⋂k

i=1(1 :£ ai) = (1 :£ A) ⊆ (1 :£ x) gives x ∈ F , as F is a Baer filter. This
completes the proof.

Lemma 2.5. For a lattice £ the following statements hold:

(1) If S is a join closed subset of £, then {1}S(£) is a Baer filter.

(2) A filter F of £ is a Baer filter if and only if for each f1, f2 ∈ F with
(1 :£ f1) ∩ (1 :£ f2) ⊆ (1 :£ x) implies x ∈ F .

Proof. (1). Let (1 :£ a) ⊆ (1 :£ x) for some a ∈ {1}S(£) and x ∈ £. Then
there exists s ∈ S such that a ∨ s = 1 which implies that s ∈ (1 :£ a) ⊆
(1 :£ x); hence x ∈ {1}S(£).

(2). If F is a Baer filter, then (1 :£ f1 ∧ f2) = (1 :£ f1) ∩ (1 :£ f2) ⊆
(1 :£ x) gives x ∈ F . Conversely, let (1 :£ A) ⊆ (1 :£ x) for some finite
subset A = {a,a2, . . . , ak} of F and x ∈ £. Then (1 :£ A) =

⋂k
i=1(1 :£ ai)

= (1 :£ a1) ∩
⋂k

i=2(1 :£ ai) = (1 :£ a1) ∩ (1 :£
∧k

i=2 ai) ⊆ (1 :£ x) gives
x ∈ F .

Lemma 2.6. Let F and G be filters of £. If F is a Baer filter, then
(F :£ G) is a Baer filter. In particular, (1 :£ H) is a Baer filter for every
filter H of £.

Proof. Let (1 :£ f) ⊆ (1 :£ x) for some f ∈ (F :£ G) (so f ∨ G ⊆ F ) and
x ∈ £. Then for each g ∈ G, (1 :£ f ∨ g) ⊆ (1 :£ x∨ g) and f ∨ g ∈ F gives
x ∨ G ⊆ F , as F is a Baer filter; hence x ∈ (F :£ G). The in particular
statement is clear.

A proper filter F of £ is said to be a direct meet of £ if £ = F ∧G and
F ∩ G = {1} for some filter G of £. Compare the next Proposition with
Propostion 2.10 (4) in [16].

Proposition 2.7. Every direct meet of a lattice £ is a Baer filter.
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Proof. Let F be a direct meet of £. Then £ = F ∧G and G∩F = F ∨G =
{1} for some filter G of £. Clearly, G ∩ (1 :£ G) = {1} and F ⊆ (1 :£ G).
If x ∈ (1 :£ G), then x = x ∧ 1 ∈ £ = F ∧ G gives x = a ∧ b for some
a ∈ F and b ∈ G. This implies that a, b ∈ (1 :£ G) by Lemma 1.1; so b = 1
which gives x = a ∈ F . Thus F = (1 :£ G). Now the assertion follows from
Lemma 2.6.

Compare the next Proposition with Lemma 3.9 in [12].

Proposition 2.8. Assume that £ be a lattice and let F be a filter of £.
The following statements are equivalent:

(1) F is a Baer filter of £;
(2) (1 :£ (1 :£ f)) ⊆ F for each f ∈ F ;
(3) F =

⋃
f∈F (1 :£ (1 :£ f)).

Proof. (1)⇒ (2). Let x ∈ (1 :£ (1 :£ f)) for some f ∈ F . Then x∨ (1 :£ f)
= {1} gives (1 :£ f) ⊆ (1 :£ x); so x ∈ F , as F is a Baer filter.

(2) ⇒ (3). By (2), H =
⋃

f∈F (1 :£ (1 :£ f)) ⊆ F . If e ∈ F , then
e ∈ (1 :£ (1 :£ e)) ⊆ H and so we have equality.

(3) ⇒ (1). Let (1 :£ f) ⊆ (1 :£ x) for some f ∈ F and x ∈ £.
This implies that x ∈ (1 :£ (1 :£ x)) ⊆ (1 :£ (1 :£ f)) ⊆ F by (3), as
required.

Proposition 2.9. Let £ be a lattice. The following hold:
(1) If p is a prime filter of £, then 1p = {x ∈ £ : (1 :£ x)∩(£\p) 6= {1}}

is a Baer filter;
(2) If x ∈ £, then F = (1 :£ (1 :£ x)) is a Baer filter;
(3) If x ∈ £, then (1 :£ x) is a Baer filter.

Proof. (1). Let x1, x2 ∈ 1p and t ∈ £. Then there exist 1 6= a /∈ p and
1 6= b /∈ p (so 1 6= a ∨ b /∈ p) such that a ∨ x1 = 1 = b ∨ x2 which implies
that a ∨ b ∈ (1 :£ (x1 ∧ x2)) ∩ (£ \ p); hence x1 ∧ x2 ∈ 1p. Similarly,
x1 ∨ t ∈ 1p. Thus 1p is a filter of £. To see that 1p is a Baer filter, at first
we show that 1p =

⋃
x∈£\p(1 :£ x) = H. If x ∈ 1p, then x ∨ z = 1 for

some 1 6= z ∈ £ \ p. This implies that 1 6= x ∈ (1 :£ z) ⊆ H; so 1p ⊆ H.
Similarly, H ⊆ 1p, and so we have equality. Let (1 :£ a) ⊆ (1 :£ x) for
some a ∈ 1p and x ∈ £. Then there exists 1 6= t ∈ £\p such that a∨ t = 1.
Then t ∈ (1 :£ a) ⊆ (1 :£ x) which gives 1 6= t ∈ (1 :£ x) ∩ (£ \ p); thus
x ∈ 1p.
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(2). It suffices to show that for each y ∈ F , (1 :£ (1 :£ y)) ⊆ F by
Proposition 2.8. Let z ∈ (1 :£ (1 :£ y)).Then z∨(1 :£ y) = {1} = y∨(1 :£x)
gives (1 :£ x) ⊆ (1 :£ y) ⊆ (1 :£ z) which implies that z ∨ (1 :£ x) = {1};
so z ∈ F .

(3). Since (1 :£ x) = (1 :£ (1 :£ (1 :£ x))), (1 :£ x) is a Baer filter by
(2) and Lemma 2.6.

Proposition 2.10. A lattice £ is a £-domain if and only if it has no
nontrivial Baer filter.

Proof. Assume that F 6= {1} is a Baer filter of £ and let 1 6= x ∈ F . Then
(1 :£ x) = {1}, as £ is a £-domain. Thus for each y ∈ £, (1 :£ x) ⊆ (1 :£ y)
which implies that y ∈ F since F is a Baer filter. Hence F = £. Conversely,
for each x ∈ £, (1 :£ x) is a Baer filter by Proposition 2.9 (3); so either
(1 :£ x) = {1} or (1 :£ x) = £. Thus for each 1 6= x ∈ £, (1 :£ x) = {1}.
Hence £ is a £-domain.

Let £ be a lattice. We denote by Spec(£) the set of all prime filters of £.
If F is a filter in £, the set of all minimal prime filters over F (or belonging
to F ) will be denoted by min(F ). We need the following proposition proved
in [6, Proposition 2.7].

Proposition 2.11. For a lattice £ the following statements hold:
(1) If F is a filter and p is a prime filter of £, then p ∈ min(F ) if and

only if for each x ∈ p, there is a y /∈ p such y ∨ x ∈ F ;
(2) If p is a prime filter of £, then p ∈ min(£) if and only if for each

x ∈ p, there is a y /∈ p such that y ∨ x = 1.

The next result shows that every minimal prime filter of a lattice £ is a
Baer filter. Compare the next Proposition with Propostion 2.13 (1) in [16].

Proposition 2.12. If F is a Baer filter of a lattice £, then every minimal
prime filter over F is a Baer filter.

Proof. Suppose that p ∈ min(F ) and let (1 :£ p) ⊆ (1 :£ x) for some p ∈ p
and x ∈ £. Then p ∨ p′ ∈ F for some p′ /∈ p by Proposition 2.11 (1).
Clearly, (1 :£ p ∨ p′) ⊆ (1 :£ p′ ∨ x). This implies that x ∨ p′ ∈ F ⊆ p, as
F is a Baer filter, and therefore x ∈ p.

Theorem 2.13. If p is a prime filter of a lattice £, then either p is a Baer
filter or the maximal Baer filters contained in p are prime Baer filters.
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Proof. Set Ω = {F : F is a Baer filter of £ and F ⊆ p}. Then {1} ∈ Ω
and (Ω,⊆) is a partial order. Clearly, Ω is closed under taking unions of
chains and so by Zorn’s Lemma, Ω has a maximal element, say m. It is
clear that p = m if and only if p is a prime Baer filter. If m $ p, then
there exists a prime filter m′ minimal with respect to m ⊆m′ and m′ $ p
since m′ will be a Baer filter by Proposition 2.12. So, either m′ = m which
gives m is prime, or m $ m′ which contradicts the maximality of m.

Theorem 2.14. If F is a 1-filter of £, then every p ∈ min(F ) is a minimal
prime filter of £.

Proof. By assumption, F = {1}S(£) = {x ∈ £ : x ∨ s = 1 for some s ∈ S}
for some join closed subset S of £. By Proposition 2.11 (2), it suffices to
show that for each x ∈ p there exists y /∈ p such that y ∨ x = 1. Let
x ∈ p. Then by Proposition 2.11 (1), there is y /∈ p such that x ∨ y ∈ F
and p∩ S = ∅. So x∨ y ∨ s = 1 for some s ∈ S \p. Thus x∨ y ∨ s = 1 and
y ∨ s /∈ p and hence p is a minimal prime filter of £.

Compare the next Theorem with Lemma 2.5 in [16].

Theorem 2.15. Let F be a filter of a lattice £. Then F contained in a pro-
per Baer filter if and only if for each finite subset K of F , (1 :£ K) 6= {1}.

Proof. Assume to the contrary, that F is contained in a proper Bear filter
G and K a finite subset of F such that (1 :£ K) = {1}. Let y ∈ £. Then
(1 :£ K) ⊆ (1 :£ y) gives y ∈ G; so G = £ which is a contradiction.
Conversely, suppose that F has the stated property and put

H = {x ∈ £ : (1 :£ K) ⊆ (1 :£ x) for some finite subset K of F}.

Let x1, x2 ∈ H and t ∈ £. Then there exist finite subsets H1, H2 of F
such that (1 :£ H1) ⊆ (1 :£ x1) and (1 :£ H2) ⊆ (1 :£ x2). It follows that
(1 :£ H1∧H2) ⊆ (1 :£ H1)∩(1 :£ H2) ⊆ (1 :£ x1)∩(1 :£ x2) ⊆ (1 :£ x1∧x2)
and (1 :£ H1) ⊆ (1 :£ x1) ⊆ (1 :£ x1 ∨ t); hence x1 ∧ x2, x1 ∨ t ∈ H.
Therefore H is a filter of £. Let (1 :£ K) ⊆ (1 :£ y) for some finite subset
K = {k1, · · · , km} of H and y ∈ £. There are finite subsets K1, · · · ,Km of
F such that (1 :£ Ki) ⊆ (1 :£ ki) for each 1 6 i 6 m. Set K ′ =

∨m
i=1 Ki ⊆

F . If z ∈ (1 :£ K ′), then z ∨K ′ = {1} gives z ∨Ki = {1} (so z ∨ ki = 1)
for each 1 6 i 6 m which implies that z ∈ (1 :£ K) ⊆ (1 :£ x); hence
(1 :£ K ′) ⊆ (1 :£ x) and so x ∈ H. Thus H is a Baer filter. Moreover, if
f ∈ F , then (1 :£ {f}) ⊆ (1 :£ f) gives F ⊆ H.
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Compare the next Theorem with Proposition 2.14 in [16].

Theorem 2.16. If F1, F2, · · · , Fm are filters of £ such that for each i 6= j,
Fi∧Fj = £, then

⋂m
i=1 Fi is a Baer filter if and only if each Fi (1 6 i 6 m)

is a Baer filter.

Proof. (1). One side is clear. To see the other side, suppose that
⋂m

i=1 Fi is
a Baer filter, f ∈ Fj for some 1 6 j 6 m and b ∈ £ such that (1 :£ f) ⊆
(1 :£ b). Set F =

⋂m
i=1,i 6=j Fi. We claim that F ∧ Fj = £. On the contrary,

assume that F ∧ Fj 6= £. Then there is a maximal filer m of £ such that
F ∧ Fj ⊆ m by Lemma 2.1 (1) (so Fj ⊆ m and F ⊆ m). Then there is a
1 6 s 6 m with s 6= j such that Fs ⊆ m. Otherwise, for each 1 6 i 6 m
with i 6= j, there exists fi ∈ Fi \m, but then

∨m
i=1,i 6=j fi ∈ F \m By Lemma

2.1 (2), and this contradicts the statement of F ⊆m. So £ = Fj ∧Fs ⊆m,
a contradiction. Therefore Fj∧F = £ and hence 0 = fj∧y for some fj ∈ Fj

and y ∈ F . So b = (b ∨ fj) ∧ (b ∨ y) and (1 :£ f ∨ y) ⊆ (1 :£ b ∨ y). Since
f ∨ y ∈

⋂m
i=1 Fi and it is a Baer filter, b ∨ y ∈

⋂m
i=1 Fi. Thus b ∨ y ∈ Fj .

Since b ∨ fj ∈ Fj and b ∨ y ∈ Fj , b ∈ Fj . Therefore Fj is a Baer filter.

For each element x in a lattice £, the intersection of all minimal prime
filters in £ containing x is denoted by Px, and a filter F in £ is called a z0-
filter if Px ⊆ F , for all x ∈ F . Clearly, P1 =

⋂
1∈p∈min(£) p =

⋂
p∈min(£) p =

{1} by [6, Lemma 2.6], x ∈ Px and if a ∈ Px, then Pa ⊆ Px. A filter F of
£ is a strongly z0-filter if PA ⊆ F for each finite subset A of F . It can be
easily seen that every strongly z0-filter is a z0-filter. For each a ∈ £, set
V (a) = {p ∈ min(£) : a ∈ p}.

Proposition 2.17. For a lattice £ the following statements hold:
(1) For every x ∈ £ and a finite subset A of £, (1 :£ A) ⊆ (1 :£ x) if

and only if V (A) ⊆ V (x), i.e. Px ⊆ PA;
(2) For a, b ∈ £, (1 :£ a) ⊆ (1 :£ b) if and only if Pb ⊆ Pa, i.e.

V (a) ⊆ V (b).

Proof. (1). Let p ∈ PA and x ∈ £ such that (1 :£ A) =

(1 :£ A) =

k⋂
i=1

(1 :£ ai) = (1 :£

k∧
i=1

ai) ⊆ (1 :£ x),

where A = {a1, a2, · · · , ak} ⊆ p. By Proposition 2.11, there exist the
sequence {b1, b2, · · · , bk} ⊆ £ \ p such that for each 1 6 i 6 k, ai ∨ bi = 1.
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Set b =
∨k

i=1 bi. Then 1 6= b /∈ p. By assumption, b ∨ (
∧k

i=1 ai) = 1 gives
b ∈ (1 :£ x) and hence b ∨ x = 1 ∈ p. This implies that x ∈ p, as p is
prime. Thus V (A) ⊆ V (x). Conversely, let x ∈ £ and A = {a1, a2, · · · , ak}
be a finite subset of £ and y ∈ (1 :£ A) =

⋂k
i=1(1 :£ ai). This implies

that y ∨ ai = 1 for each 1 6 i 6 k. Then Px ⊆ PA ⊆
⋂k

i=1 Pai gives
x ∨ y ∈ Px∨y ⊆

⋂k
i=1 Pai∨y = P1 = {1} and hence x ∨ y = 1, as needed.

(2). This is clear by (1).

Lemma 2.18. Let F be a filter of a lattice £. The following hold:
(1) F is a z0-filter if and only if for each a ∈ F and b ∈ £, Pb ⊆ Pa

implies b ∈ F .
(2) F is a strongly z0-filter if and only if for each a ∈ £ and a finite

subset A of £, Pa ⊆ PA implies a ∈ F .

Proof. (1). Assume that F is a z0-filter and let Pb ⊆ Pa, where a ∈ F and
b ∈ £ which gives b ∈ Pb ⊆ Pa ⊆ F . Conversely, let x ∈ F and y ∈ Px.
Then by assumption, Py ⊆ Px and x ∈ F gives y ∈ F ; so Px ⊆ F .

(2). Suppose that F is a strongly z0-filter and let Pa ⊆ PA for some
a ∈ £ and a finite subset A of £. By assumption, a ∈ Pa ⊆ PA ⊆ F .
Conversely, let B be a finite subset of £ and z ∈ PB. Then by assumption,
Pz ⊆ PB gives z ∈ F . Thus PB ⊆ F . This completes the proof.

Proposition 2.19. A filter F of a lattice £ is a z0-filter if and only if F
is a strongly z0-filter.

Proof. It is enough to show that if F is z0-filter, then F is a strongly z0-
filter. Let Pa ⊆ PA for some a ∈ £ and a finite set A = {a1, a2, · · · , ak}
of £. Then (1 :£

∧k
i=1 ai) =

⋂k
i=1(1 :£ ai) = (1 :£ A) ⊆ (1 :£ a) by

Proposition 2.17; so again by Proposition 2.17, Pa ⊆ P∧k
i=1 ai

gives a ∈ F ,
as F is a z0-filter. Thus F is a strongly z0-filter by Lemma 2.18.

The following result determines the class of lattices for which their Baer
filters and z0-filters are the same.

Theorem 2.20. A filter F of a lattice £ is a Baer filter if and only if F is
a z0-filter.

Proof. Assume that F is a Baer filter and let a ∈ F and b ∈ £ such that
Pb ⊆ Pa. By Proposition 2.17, (1 :£ a) ⊆ (1 :£ b). Now F is a Baer filter
gives b ∈ F . Thus F is a z0-filter. Conversely, suppose that F is a z0-filter
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and let (1 :£ a) ⊆ (1 :£ b) for some a ∈ F and b ∈ £. Then by Proposition
2.17, we have b ∈ Pb ⊆ Pa ⊆ F , i.e. the result holds.

3. Some properties of z-filters

For each element x in a lattice £, the intersection of all maximal filters in
£ containing x is denoted by Mx, and a filter F in £ is called a z-filter if
Mx ⊆ F , for all x ∈ F . Clearly, M1 = Rad(£), x ∈Mx and if a ∈Mx, then
Ma ⊆Mx. A lattice £ is called semisimple provided that Rad(£) = {1}.

Lemma 3.1. Let F be a filter of £. Then F is a z-filter if and only if for
each a ∈ F and b ∈ £, Mb ⊆Ma implies b ∈ F .

Proof. Assume that F is a z-filter and letMb ⊆Ma, where a ∈ F and b ∈ £.
It follows that b ∈Mb ⊆Ma ⊆ F . Conversely, let x ∈ F and y ∈Mx. Then
by assumption, My ⊆Mx and x ∈ F gives y ∈ F ; so Mx ⊆ F .

Remark 3.2. 1. If m is a maximal filter of £, then Ma ⊆m for all a ∈m.
Thus the family of z-filters contains the set of maximal filters of £.

2. It can be easily seen that any intersection of z-filters is a z-filter.

3. By (1) and (2), Rad(£) is a z-filter. Moreover, if x ∈ Rad(£), F is
any z-filter and y ∈ F , then Mx ⊆ My gives x ∈ F . Therefore Rad(£) is
contained in every z-filter.

4. The intersections of maximal filters are the most obvious z-filters and
they will be called strong z-filters.

5. Suppose that T ({x}) is a z-filter; we show that

T ({x}) =
⋂
{m ∈ Max(£) : T ({x}) ⊆m}.

If y ∈
⋂
{m ∈ Max(£) : T ({x}) ⊆m}, thenMy ⊆Mx gives y ∈ T ({x}),

and so we have equality. Thus any cyclic z-filter is a strong z-filter.

Proposition 3.3. If F is a z-filter, then (F :£ G) is a z-filter for any G.

Proof. Let Mb ⊆Ma for some a ∈ (F :£ G) and b ∈ £. Then Mb∨g ⊆Ma∨g
for all g ∈ G. Since a∨g ∈ F , b∨g ∈ F for all g ∈ G, i.e. b ∈ (F :£ G).

Theorem 3.4. Every minimal prime filter in a semisimple lattice £ is a
z-filter.
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Proof. Assume that p is a minimal prime filter of £ and let Mq ⊆ Mp for
some p ∈ p and q ∈ £. Since p is minimal prime, there exists a y /∈ p such
that p∨y = 1 by Proposition 2.11. We claim that q∨y = 1. Assume to the
contrary, that y∨q 6= 1. By Lemma 2.1, there exists a maximal filter m such
that y∨ q /∈m, since an element which belongs to every maximal filter is 1,
as £ is semisimple. Then m∧T ({y∨ q}) = £, as m is a maximal filter and
so there would be elements s ∈ £ and m ∈m such that 0 = m∧ (y∨ q∨ s),
which then implies p = (p∨m)∧ (p∨ y ∨ q ∨ s) = p∨m, and hence p ∈m.
But q ∈ Mq ⊆ Mp ⊆ m, so we would have q ∈ m, and hence q ∨ y ∈ m,
leading to a contradiction. Therefore y ∨ q = 1 ∈ p, and since p is prime
with y /∈ p, we deduce that q ∈ p. Thus, p is a z-filter.

Compare the next theorem with Theorem 1.1 in [15].

Theorem 3.5. If F is a z-filter of £, then every p ∈ min(F ) is a z-filter.

Proof. It suffices to show that if p is a prime filter containing F which is
not a z-filter, it is not minimal. If p is not a z-filter, then there are elements
q /∈ p and p ∈ p such that Mq ⊆Mp by Lemma 3.1. Set D = (£ \ p) ∪H,
where H = {p ∨ s : s /∈ p}. Clearly, 0 ∈ D. Let x, y ∈ D. If x, y /∈ p, then
x∨ y /∈ p gives x∨ y ∈ D. If x /∈ p and y ∈ H, then there exists u /∈ p such
that y = u ∨ p which implies that x ∨ y = (x ∨ u) ∨ p ∈ H ⊆ D. Similarly,
if x ∈ H and y /∈ p, we have x ∨ y ∈ D. If x, y ∈ H, then x = p ∨ u and
y = p ∨ u′ for some u, u′ /∈ p. Then x ∨ y = p ∨ (u ∨ u′) ∈ H ⊆ D. Thus D
is a join closed subset of £. If x ∈ F ∩D, then x ∈ H; so x = p∨s for some
s /∈ p. By assumption, Mq∨s ⊆ Mp∨s and p ∨ s ∈ F gives q ∨ s ∈ F ⊆ p.
But q, s /∈ p and p is prime. Thus D∩F = ∅. By [6, Lemma 2.6 (i)], There
is a prime filter F ⊆ p′ which is maximal with respect to the property
p′ ∩ F = ∅ and it is clear that p′ $ p. Thus p is not minimal.

Compare the next corollary with Theorem 1.5 in [15].

Corollary 3.6. If p is a prime filter of a semisimple lattice £, then either
p is a z-filter or the maximal z-filters contained in p are prime z-filters.

Proof. Set ∆ = {G : G is a z-filter of £ and G ⊆ p}. Then {1} ∈ ∆ and
∆ is inductive so by Zorn’s lemma, ∆ has a maximal element, say q. It is
clear that p = q if and only if p is a prime z-filter. If q $ p, then there
exists a prime filter q′ minimal with respect to q ⊆ q′ and q′ $ p since q′

will be a z-filter by Theorem 3.5. So, either q′ = q which gives q is prime,
or q $ q′ which contradicts the maximality of q.
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The following example shows that z-filters are not necessarily Baer fil-
ters.

Example 3.7. Let D = {a, b, c}. Then £ = {X : X ⊆ D} forms a
distributive lattice under set inclusion greatest element D and least element
∅ (note that if x, y ∈ £, then x∨y = x∪y and x∧y = x∩y). It can be easily
seen that proper filters of £ are {D}, F1 = {D, {a, b}}, F2 = {D, {a, c}},
F3 = {D, {b, c}}, F4 = {D, {a, c}, {a, b}{a}}, F5 = {D, {b, c}, {a, b}{b}}
and F6 = {D, {a, c}, {c, b}{c}}. Then

F3 = (1 :£ {a}) ⊆ (1 :£ {a, b}) = F6, {a, b} ∈ F5

and {a} /∈ F5. This shows that F5 is not a Baer filter, but F5 is a z-filter
since it is maximal. So Baer filters and z-filters are not coincide generally.

The following theorem shows when the class of Baer filters is contained
in the class of z-filters. Compare the next Theorem with Propostion 2.9 in
[16].

Theorem 3.8. For a lattice £ the following statements are equivalent:
(1) £ is semisimple;
(2) Every Baer filter of £ is a z-filter.

Proof. (1) ⇒ (2). Assume that F is a Baer filter of £ and let Mb ⊆ Ma,
where a ∈ F and b ∈ £. Let x ∈ (1 :£ a). Then Mb ⊆ Ma gives Mb∨x ⊆
Mx∨a ⊆ M1 = Rad(£) = {1}. Hence b ∨ x ∈ Mb∨x = {1} which implies
that (1 :£ a) ⊆ (1 :£ b); thus b ∈ F , as F is Baer Filter. Therefore F is a
z-filter.

(2)⇒ (1). Suppose that every Baer filter is a z-filter; so {1} is a z-filter
which gives Rad(£) = M1 ⊆ {1} and hence Rad(£) = {1}. Thus £ is
semisimple.

4. Further results

This section is devoted to the relation between Baer filters and prime filters.
Let us begin the following proposition.

Proposition 4.1. For a lattice £ the following statements hold:
(1) If F is a filter, p is a prime filter of £ and F ∩ p is a Baer filter,

then either F or p is a Baer filter;
(2) If p and q are prime filters of £ which do not belong to a chain,
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then p and q are both Baer filters if and only if p∩q is a Baer filter;
(3) If F is a filter, m is a maximal filter of £ such that F * m, then F

and m are both Baer filters if and only if F ∩m is a Baer filter.

Proof. (1). If F ⊆ p, then p ∩ F = F is a Baer filter. So we may assume
that there exists x ∈ F with x /∈ p. Let (1 :£ p) ⊆ (1 :£ y) for some p ∈ p
and y ∈ £. Then (1 :£ x ∨ p) ⊆ (1 :£ x ∨ y) and p ∨ x ∈ p ∩ F gives
x∨ y ∈ p∩F , as p∩F is a Baer filter which implies that y ∈ p. Thus p is
a Baer filter.

(2). We need only prove the converse. Assume that q * p (so there
exists x ∈ q with x /∈ p) and let (1 :£ p) ⊆ (1 :£ y) for some p ∈ p
and y ∈ £. Then (1 :£ x ∨ p) ⊆ (1 :£ x ∨ y) and p ∨ x ∈ p ∩ q gives
x ∨ y ∈ q ∩ p ⊆ p, as q ∩ p is a Baer filter; hence y ∈ p. Consequently, p
is a Baer filter and so is q via similar argument.

(3). Since m $ m ∧ F ⊆ £, we have F ∧m = £. Now the assertion
follows from Theorem 2.16.

An element x of £ is called identity join of a lattice £, if there exists
1 6= y ∈ £ such that x ∨ y = 1. An element x of £ is called zero-divisor of
a lattice £, if there exists 0 6= y ∈ £ such that x ∧ y = 0. The set of all
identity joins of a lattice £ is denoted I(£) and the set of all zero-divisors
of £ is denoted Z(£).

Lemma 4.2. If {1} 6= p is a prime filter of £ with (1 :£ p) 6= {1}, then
p ⊆ Id(£).

Proof. By [7, Proposition 2.2 (iv)], p = (1 :£ (1 :£ p)). This implies that
p ⊆ Id(£).

Following the concept of classical rings (see [13, 3]), we define classical
lattices as follows:

Definition 4.3. A lattice £ is called [classical if £ = I(£) ∪ Z(£).

The following theorem shows that: when is every prime filter of £ a
Baer filter? (Compare the next theorem with Proposition 3.2 in [16]).

Theorem 4.4. For a lattice £ the following statements are equivalent:
(1) Every prime filter of £ is a Baer filter;
(2) Every filter of £ is a Baer filter;
(3) For each x ∈ £, T ({x}) is a Bear filter;
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(4) £ is a classical lattice and for each x, y ∈ £, (1 :£ x) ⊆ (1 :£ y)

implies y ∈ T ({x}).

Proof. (1)⇒ (2). Let F be a filter of £. Then F =
⋂

F⊆p p by [6, Lemma
2.6 (ii)]; hence F is a Baer filter of £ by (1).

The implication (2)⇒ (3) is clear.
(3) ⇒ (4). Let x be an arbitrary element of £ such that x 6= 0, 1. If

x /∈ Z(£), then there exists a non-zero element y of £ such that x ∧ y 6= 0;
so x ∧ y 6= 1. If T ({x ∧ y}) = £, then 0 = (x ∧ y) ∨ s for some s ∈ £ gives
x∧y = 0, a contradiction. Thus T ({x∧y}) 6= £. If (1 :£ x∧y) = {1}, then
for each z ∈ £, we have (1 :£ x ∧ y) ⊆ (1 :£ z) and hence z ∈ T ({x ∧ y}).
Therefore, T ({x ∧ y}) = £, a contradiction. Thus (1 :£ x ∧ y) 6= {1}. Let
1 6= a ∈ (1 :£ x∧ y). Then a∨ (x∧ y) = (a∨x)∧ (a∨ y) = 1 gives a∨x = 1
which implies that x ∈ I(£). Thus £ is a classical lattice. Let x, y ∈ £
such that (1 :£ x) ⊆ (1 :£ y). By assumption, T ({x}) is a Baer filter; hence
y ∈ T ({x}).

(4)⇒ (1). Suppose that p is a prime filter of £ and let p ∈ p. We claim
that (1 :£ p) 6= {1}. Otherwise, for each z ∈ £, we have (1 :£ p) ⊆ (1 :£ z)
and hence z ∈ T ({p}). Therefore, T ({p}) = £ ⊆ p, a contradiction. Thus
p ∈ I(£) and so p ⊆ I(£). Let (1 :£ p) ⊆ (1 :£ x) for some p ∈ p and
x ∈ £. By assumption, x ∈ T ({p}) ⊆ p, as needed.

The following theorem is a lattice counterpart of Theorem 3.1 in [16]
describing the structure of maximal ideals of a classical ring.

Theorem 4.5. For a lattice £ the following statements are equivalent:

(1) £ is a classical lattice such that for every finitely generated filter
F ⊆ I(£), (1 :£ F ) 6= {1};

(2) Every maximal filter of £ is a Baer filter.

Proof. (1) ⇒ (2). Suppose that m is a maximal filter of £. We claim
that m ⊆ I(£). Assume to the contrary, that there is a x ∈ m such that
x /∈ I(£). By assumption, there exists a non-zero element y /∈ m such
that x ∧ y = 0. Then T ({y}) ∧m = £ gives x = m ∧ (y ∨ s) for some
m ∈ m and s ∈ £ which implies that y ∨ s ∈ m by Lemma 1.1. Then
0 = x ∧ y = m ∧ y ∧ (y ∨ s) = m ∧ (y ∨ s) = x, a contradiction. Thus
m ⊆ I(£). Set

G = {x ∈ £ : (1 :£ A) ⊆ (1 :£ x) for some finite subset A of m}.



On Baer filters of bounded distributive lattices 17

If x ∈ m, then (1 :£ x) ⊆ (1 :£ x) gives m ⊆ G. We claim that G is
a proper Baer filter. Let x, y ∈ G and a ∈ £. Then there are two finite
subsets A and B of m such that (1 :£ A) ⊆ (1 :£ x) and (1 :£ B) ⊆ (1 :£ y).
Hence,

(1 :£ A ∧B) ⊆ (1 :£ A) ∩ (1 :£ B) ⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)

and (1 :£ A) ⊆ (1 :£ x) ⊆ (1 :£ x∨a) gives x∧y, x∨a ∈ G. Thus G is a filter
of £. Let (1 :£ g) ⊆ (1 :£ z) for some g ∈ G and z ∈ £. By assumption,
there exists a finite subset H of m such that (1 :£ H) ⊆ (1 :£ g). Therefore
(1 :£ H) ⊆ (1 :£ g) ⊆ (1 :£ z) and hence z ∈ G. So G is a Baer filter. If
y ∈ G, then {1} 6= (1 :£ T (A)) ⊆ (1 :£ A) ⊆ (1 :£ y) for some finite subset
A of m which implies that y ∈ I(£) and so G ⊆ I(£). Thus G is a proper
filter and so by maximality of m we have G = m is a Baer filter.

(2) ⇒ (1). Let c /∈ Z(£). Then there exists a maximal filter m′ of £
such that c ∈ T ({c}) ⊆m′ by Lemma 2.1. If m ∈m′, then (1 :£ m) 6= {1}
(otherwise, T ({m}) = £ ⊆ m′, a contradiction since m′ is a Baer filter)
gives m′ ⊆ I(£) by Lemma 4.2 and so c ∈ I(£). Thus £ is a classical lattice.
Let H be a finitely generated filter of £ such that H ⊆ I(£). Then there is
a maximal filter Q of £ such that H ⊆ Q. It follows that (1 :£ H) 6= {1},
as Q is a Baer filter. This completes the proof.

Compare the next theorem with Theorem 3.2 in [16]).

Theorem 4.6. For a lattice £ the following statements are equivalent:
(1) Every prime Baer filter of £ is either a minimal prime or a maximal

filter;
(2) For each maximal filter m of £ and each m,n ∈m, there exists a

finite subset A ⊆ (1 :£ m) and d /∈m such that (1 :£ T (A∪{m})) ⊆
(1 :£ d ∨ n).

Proof. (1)⇒ (2) Assume to the contrary, that there exists a maximal filter
m of £ and m,n ∈m such that (1 :£ T (A ∪ {m})) * (1 :£ n ∨ d) for each
d /∈m and each finite subset A ⊆ (1 :£ m). Set S = {n ∨ c : c /∈m} ∪ {0},

G = {x ∈ £ : (1 :£ T (A ∪ {m})) ⊆ (1 :£ x), where A ⊆ (1 :£ m) is finite}.

Let x, y ∈ G and a ∈ £. Then there are two finite subsets A and B of
(1 :£ m) such that (1 :£ T (A ∪ {m}) ⊆ (1 :£ x) and (1 :£ T (B ∪ {m}) ⊆
(1 :£ y). Hence,

(1 :£ T (A ∪B ∪ {m}) ⊆ (1 :£ T (A ∪ {m}) ∩ (1 :£ T (B ∪ {m})



18 S. E. Atani

⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)

and (1 :£ T (A ∪ {m}) ⊆ (1 :£ x) ⊆ (1 :£ x ∨ a) gives x ∧ y, x ∨ a ∈ G.
Thus G is a filter of £. Let (1 :£ g) ⊆ (1 :£ z) for some g ∈ G and
z ∈ £. By assumption, there exists a finite subset C of (1 :£ m) such that
(1 :£ T (C ∪ {m}) ⊆ (1 :£ g) ⊆ (1 :£ z); so z ∈ G which implies that G
is a Baer filter. Clearly, S is a join closed subset of £. If s ∈ S ∩ G, then
s = n ∨ t for some t /∈ m and there exists a finite subset D of (1 :£ m)
such that (1 :£ T (C ∪ {m}) ⊆ (1 :£ n ∨ t) which is a contradiction. Thus
G ∩ S = ∅. Then there exists a p ∈ min(G) such that p ∩ S = ∅ by [6,
Lemma 2.6 (i)]. Moreover, by Proposition 2.12, p is a Baer filter. Since
(1 :£ T (A ∪ {m})) ⊆ (1 :£ m), m ∈ G ⊆ p. Then by Proposition 2.11,
there exists d /∈ p such that m ∨ d = 1 which implies that {d} ⊆ (1 :£ m).
On the other hand (1 :£ T ({d,m})) ⊆ (1 :£ d). Thus d ∈ G ⊆ p which is a
contradiction, i.e. (2) holds.

(2)⇒ (1). Let p be a prime Baer filter of £. By Lemma 2.1, there exists
a maximal filter q of £ such that p ⊆ q. If p = q, then we are done. So we
may assume that p 6= q. Suppose that p is neither maximal nor minimal
prime. By Proposition 2.11, there exists p ∈ p such that p ∨ c 6= 1 for each
c ∈ £ \ p. Suppose that q ∈ q such that q /∈ p. Thus (1 :£ p)∩ (£ \ p) = ∅
which implies that (1 :£ p) ⊆ p. Now by assumption, there exists a finite
subset A of (1 :£ p) and d ∈ £\q such that (1 :£ T (A∪{p})) ⊆ (1 :£ q∨d).
Then T (A ∪ {p}) ⊆ p and p is a Baer filter gives q ∨ d ∈ p; hence either
d ∈ p or q ∈ p, a contradiction, i.e. (1) holds.

Compare the next theorem with Theorem 3.3 in [16].

Theorem 4.7. For a lattice £ the following statements are equivalent:
(1) Every prime Baer filter of £ is a minimal prime filter;
(2) For each a ∈ £, there exists a finitely generated filter F such that

F ⊆ (1 :£ a) and (1 :£ T (F ∪ {a})) = {1}.

Proof. (1)⇒ (2). Let a ∈ £. If (1 :£ a) = {1}, then (1 :£ T ({1} ∪ {a})) =
{1}. So we may assume that (1 :£ a) 6= {1}. Set G = T ({a} ∪ (1 :£ a)).
We claim that there exists a finite subset A of G such that (1 :£ A) = {1}.
To the contrary assume that for each finite subset A of G, (1 :£ A) 6= {1}.
Set H = {x ∈ £ : (1 :£ A) ⊆ (1 :£ x) for some finite subset A ⊆ G}.

Let x, y ∈ H and u ∈ £. So there exist two finite subsets A,B of G
such that (1 :£ A) ⊆ (1 :£ x) and (1 :£ B) ⊆ (1 :£ y). Then

(1 :£ A ∧B) ⊆ (1 :£ A) ∩ (1 :£ B) ⊆ (1 :£ x) ∩ (1 :£ y) ⊆ (1 :£ x ∧ y)
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and (1 :£ A) ⊆ (1 :£ x) ⊆ (1 :£ x ∨ u); hence x ∧ y, x ∨ u ∈ H. Let
(1 :£ h) ⊆ (1 :£ z) for some h ∈ H and z ∈ £. Then there exists a
finite subset C of G such that (1 :£ C) ⊆ (1 :£ c) ⊆ (1 :£ z); hence
z ∈ H. Thus H is a Baer filter. Let p be a minimal prime filter over H.
By Proposition 2.12, p is a Baer filter; so p is a minimal prime filter of £
by (1). Since {a} ⊆ G and (1 :£ a) ⊆ (1 :£ a), a ∈ H ⊆ p. Moreover,
if b ∈ (1 :£ a), then {b} ⊆ (1 :£ a) ⊆ G and (1 :£ b) ⊆ (1 :£ b) gives
(1 :£ a) ⊆ p. Now by Proposition 2.11, there exists c ∈ £ \ p such that
c ∨ a = 1 which implies that c ∈ (1 :£ a) ⊆ p, a contradiction. Hence
there is a finite subset A = {a1, a2, · · · , ak} of G such that (1 :£ A) = {1}.
Assume that for each 1 6 i 6 k, a ∧ bi 6 ai (so ai = (ai ∨ a) ∧ (ai ∨ bi),
where bi ∈ (1 :£ a). Set F = T ({b1, b2, · · · , bk}) ⊆ (1 :£ a). It remains to
show that (1 :£ T (F ∪ {a})) = {1}. Then for each 1 6 i 6 k,

(1 :£ bi)∩ (1 :£a) ⊆ (1 :£a∨ai)∩ (1 :£ai∨ bi) = (1 :£ (ai∨a)∧ (ai∨ bi))
= (1 :£ai).

This implies that

(1 :£ T (F ∪ {a})) ⊆ (1 :£ F ∪ {a}) = ∩ki=1(1 :£ bi) ∩ (1 :£ a) ⊆ ∩ki=1ai
= (1 :£ A) = {1}.

(2) ⇒ (1). Let p be a prime Baer filter and a ∈ p. By (2), there
exits a finitely generated filter F = T (A) of £ such that F ⊆ (1 :£ a) and
(1 :£ T (F ∪{a})) = {1}, where A is a finite set. We claim that A∪{a} * p.
Otherewise, for each y ∈ £, {1} = (1 :£ A ∪ {a}) ⊆ (1 :£ y) gives y ∈ p, as
p is a Baer filter of £, a contradiction. Hence there exists z ∈ A ⊆ (1 :£ a)
such that z /∈ p and z∨a = 1. Therefor by Proposition 2.11, p is a minimal
prime filter.
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A quasi-pseudometric
on group-like Menger n-groupoids

Hamza Boujouf

Abstract. We introduce and investigate topologies on Menger n-groupoids. These
topologies are defined by families of quasi-pseudometrics. We explore the relationship
between the right X-closure property, continuity, and extension to an abelian binary
group. Finally, we provide the necessary conditions for the topological embedding of
group-like Menger n-groupoids in a locally compact binary group as an open subset.

1. Introduction and preliminaries

In the field of topological algebras, considerable attention has been de-
voted to the study of the properties of topological n-ary groups and n-ary
semigroups. The properties of topological Menger n-groupoids have been
recently explored in [2, 3, 4]. The generalization of some results is always
interesting, and in this paper, we aim to extend some of the results from [1]
to the case of Menger n-groupoids.

One of the generalized metric spaces is the pseudometric space intro-
duced by Kuratowski. As the study of non-symmetric topology has gained
renewed attention due to its application in various problems in applied
physics, we have started utilizing quasi-pseudometric, which are another
generalization of metric spaces introduced by Kelly J.C. in [11].

The question of describing families of quasi-pseudometrics that generate
a topology on a Menger n-groupoid X, consistent with the n-ary operation
and the operation resulting from the definition of Menger n-groupoid, is of
interest. Notice that the topological Menger n-groupoid (X, g, τ) such that
g : Xn → X : (x1, . . . , xn) 7→ g(xn1 ) = x1 is not uniformizable.

In this article we investigate the application of certain quasi-pseudomet-
rics to define topologies on Menger n-groupoids, enabling the continuity of

2010 Mathematics Subject Classification: 20N15, 22A15, 22A30
Keywords: Menger n-groupoid, topological Menger n-groupoid, quasi-pseudometric
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each translation within these structures and resulting in transformation
into topological Menger n-groupoids. Specifically, we explore the use of in-
variant quasi-pseudometric families to generate topologies, examining their
implications for the right X-closure property, continuity, and extension to
an abelian binary group. By establishing compatibility conditions between
these topologies and the n-ary operation, we emphasize the crucial contri-
bution of invariant quasi-pseudometrics in defining and characterizing the
topological properties of Menger n-groupoids. And at the end we gave the
necessary conditions for the topological embeddable of group-like Menger
n-groupoids in a locally compact binary group as an open set.

By a Menger n-groupoid (X, g) we mean the nonempty set X together
with an n-ary operation g : Xn → X satisfying the superassociative law
g(g(xn1 ), yn−11 ) = g(x1, g(x2, y

n−1
1 ), . . . , g(xn, y

n−1
1 )). A Menger n-groupoid

(X, g) is i-solvable if for all an−11 , b ∈ X, the equation g(ak−11 , x, an−1k ) = b,
is uniquely solvable for the case k = 1 and k = i+ 1. A Menger n-groupoid
is called (1, j)-commutative if g(xj−11 , xj , x

n
j+1) = g(xj , x

j−1
2 , x1, x

n
j+1), and

(j, n)-commutative if g(xj−11 , xj , x
n
j+1) = g(xj−11 , xn, x

n−1
j+1 , xj) for xn1 ∈ X.

And (X, g) is abelian if g(xn1 ) = g(xσ(1), xσ(2), . . . , xσ(n)) for xn1 ∈ X and all
permutations σ ∈ Sn.

It should be noted (cf. [6]) that any Menger n-groupoid is isomorphic
to some Menger algebra of full (n-1)-place functions. The necessary and
sufficient conditions for partially commutative Menger n-groupoids to be
isomorphic to Menger algebras of specific (n− 1)-place functions are given
in [7], [8] and [9]. Menger n-groupoids which are i-solvable are characterized
in [5] (see also [6]).

A binary semigroup (X, ·), where x · y = g(x,
n−1
y ), is called a diagonal

semigroup of a Menger n-groupoid (X, g). If a Menger n-groupoid (X, g) is
i-solvable then its diagonal semigroup is a group (see [6]).

The triple (X, g, τ) is a topological Menger n-groupoid if g is continuous,
in all variables together, in the topology τ defined on a Menger n-groupoid
(X, g). Note that if the n-ay operation g is continuous on the topology
τ defined on a Menger n-groupoid X, then the operation g

(2)
defined by

g
(2)

(xn1 , y
n
2 ) = g(g(xn1 ), yn2 ) will also be continuous in (X, τ). But the conti-

nuity of the operation g
(2)

does not always imply the continuity of g or the
binary operation ·. As an example, we take the Menger 3-groupoid (X, g)
such that X =]1,+∞) with the sum of the usual topology on ]1, 2]∪[5,+∞)
and the discrete topology on the interval [2, 5], i.e. the topology τ is de-
fined as the set of all sets representable as unions of elements of the usual
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topology on ]1, 2] ∪ [5,+∞) and of the discrete topology on [2, 5] (see [3]).
Algebraic properties of the Menger n-groupoid are considered in detail

in the monograph [6].

2. Results

A mapping f : X × X → [0,+∞) is called a quasi-pseudometric on X if
for every x, y and z from X, the following conditions hold: f(x, x) = 0 and
f(x, y) 6 f(x, z)+f(z, y). If, in addition, f(x, y) = f(y, x), then f is called
a pseudometric (or deviation).

The maps tk : X → X, where k ∈ Nn = {1, 2, . . . , n}, defined by
tk(x) = g(ak−11 , x, ank+1), a

n
1 ∈ X, are called the translations. A quasi-

pseudometric on (X, g) is said to be k-invariant, if f(tk(x), tk(y)) = f(x, y)
for all x, y, an1 ∈ X. If f is k-invariant for each k ∈ Nn, then f is invariant.
Furthermore, f is right (resp. left) invariant if f(tn(x), tn(y)) = f(x, y)
(resp. f(t1(x), t1(y)) = f(x, y) ), for all x, y ∈ X.

Every family Φ of quasi-pseudometrics generates a topology on X in a
standard way: the sets Bf (x, ε) = {x ∈ X : f(x, y) < ε}, where y ∈ X,
f ∈ Φ, ε > 0, form a pre-base of such a topology.

Proposition 2.1. If in a Menger n-groupoid (X, g) there are cj1 ∈ X, j < n

and i ∈ {0, 1, . . . , j − 1} such that g(ci1,
n−j
x , cji+1) = x for all x ∈ X, then

every quasi-pseudometric f on X induces a new quasi-pseudometric dak1
defined by dak1 (x, y) = f(g(ak1, x, a

n−1
k+1), g(ak1, y, a

n−1
k+1)). If f is additionally

k-invariant, then dak1 is also k-invariant.

Proof. Let f be a quasi-pseudometric on a Menger n-groupoid (X, g), and
x, y, z ∈ X. Then dak1

(x, x) = f(g(ak1, x, a
n−1
k+1), g(ak1, x, a

n−1
k+1)) = 0 and

dak1
(x, y)=f(g(ak1, x, a

n−1
k+1), g(ak1, y, a

n−1
k+1))6f(g(ak1, x, a

n−1
k+1), g(ak1, z, a

n−1
k+1))

+ f(g(ak1, z, a
n−1
k+1), g(ak1, y, a

n−1
k+1)) = dak1

(x, z) + dak1
(z, y).

Thus, dak1 is a quasi-pseudometric on X. Moreover, if (X, g) satisfies
the given condition and f is k-invariant. Then
dak1

(g(ak−11 , x, ank+1), g(ak−11 , y, ank+1)) =

f(g(ak1, g(ci−11 , x, cni+1), a
n−1
k+1), g(ak1, g(ci−11 , y, cni+1), a

n−1
k+1)) = f(g(ak1, x, a

n−1
k+1),

g(ak1, y, a
n−1
k+1)) = dak1

(x, y). Therefore, dak1 is also k-invariant.

Proposition 2.2. If a topological Menger n-groupoid (X, g, τ) satisfies the
assumption of Proposition 2.1, then the continuity of the operation g

(2)
im-

plies the continuity of the operation g.
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Proof. Since g(xn1 ) = g(g(ci1,
n−j
x , cji+1), x

n
2 ) = g

(2)
(ci1,

n−j
x , cji+1, x

n
2 ), the con-

tinuity of the operation g
(2)

implies the continuity of the operation g.

Theorem 2.3. Let Φ be a family of k-invariant quasi-pseudometrics on
a Menger n-groupoid (X, g). If the topology τf on X, is generated by the
family Φ, then (X, g, τf ) is a topological Menger n-groupoid.

Proof. Let f1, . . . , fm ∈ Φ, and let ε and xn1 ∈ X. The collection of sets
W = {s ∈ X : fi(s, g(xn1 )) < ε, i ∈ Nm} forms a fundamental system of
neighborhoods of the point g(xn1 ) in the topology τf induced by Φ. The
set Uk = {h ∈ X : fi(h, xk) < ε, i ∈ Nm} is a neighborhood of a point xk,
where k ∈ Nn, in the topology τf on X. If hk ∈ Uk, then for each i ∈ Nm,
we obtain
fi(g(hn1 ), g(xn1 )) 6 fi(g(hn1 ), g(hn−11 , xn))+fi(g(hn−11 , xn), g(hn−21 , xn−1, xn))
+ . . .+ fi(g(h21, x

n
3 ), g(h1, x

n
2 )) + fi(g(h1, x

n
2 ), g(xn1 )

= fi(hn, xn) + fi(hn−1, xn−1) + . . .+ fi(h2, x2) + fi(h1, x1) < n( εn) = ε.
Consequently, g(hn1 ) ∈W and therefore the operation g is continuous in τf .
Thus, (X, g, τf ) is a topological Menger n-groupoid.

Corollary 2.4. Let Φ be a family of k-invariant quasi-pseudometrics on a
Menger n-groupoid (X, g). Then all translations tk of X are continuous in
the topology τf on X, generated by the family Φ.

Proof. Theorem 2.3 establishes that g on (X, τf ) is continuous Thus each
translation x 7→ g(ak−11 , x, ank+1) of X is continuous in the topology τf .

Corollary 2.5. Let Φ be a family of k-invariant quasi-pseudometrics on
a Menger n-groupoid (X, g). If the topology τf on X, is generated by the
family Φ, then the operation g

(2)
is continuous in τf .

Theorem 2.6. If a Menger n-groupoid (X, g) with a topology τf generated
by the family Φ of quasi-pseudometrics invariant from the right is (1, j)-
commutative for some j ∈ Nn, then (X, g, τf ) is a topological Menger n-
groupoid.

Proof. Let a Menger n-groupoid (X, g) be (1, j)-commutative. Then for
any f1, . . . , fm ∈ Φ, ε > 0, xn1 ∈ X the collection of sets

W = {s ∈ X : fi(s, g(xn1 )) < ε, i ∈ Nm}

forms a basis for the topology τf induced by Φ on X. Consider the set
Uk = {h ∈ X : fi(h, xk) < ε, i ∈ Nm}, which is a neighborhood of a point
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xk, where k ∈ Nn, in the topology τf . If hk ∈ Uk for k ∈ Nn, then for each
i ∈ Nm, we have:
fi(g(hn1 ), g(xn1 )) 6 fi(g(h1, h

n−1
2 , hn), g(h1, h

n−1
2 , xn)) +

fi(g(h1, h
n−1
2 , xn), g(h1, h

n−2
2 , xn−1, xn)) + . . .+

fi(g(h1, h2, x
n
3 ), g(h1, x

n
2 )) + fi(g(h1, x

n
2 ), g(xn1 ))

= fi(g(hn, h
n−1
2 , h1), g(xn, h

n−1
2 , h1)) +

fi(g(hn−1, h
n−2
2 , h1, xn), g(xn−1, h

n−2
2 , h1, xn))

+. . .+fi(g(h2, h1, x
n
3 ), g(x2, h1, x

n
3 ))+fi(g(h1, h

n
2 ), g(xn1 ))

= fi(hn, xn) + fi(hn−1, xn−1) + . . .+ fi(h2, x2) + fi(h1, x1)
< n( εn) = ε.

Consequently, we can conclude that g(hn1 ) ∈ W , and therefore the op-
eration g is continuous in τf . Hence, (X, g, τf ) is a topological Menger
n-groupoid.

In a similar manner, we can prove

Theorem 2.7. If a Menger n-groupoid (X, g) with a topology τf generated
by the family Φ of quasi-pseudometrics invariant from the left is (j, n)-
commutative for some j ∈ Nn, then (X, g, τf ) is a topological Menger n-
groupoid.

Corollary 2.8. If an abelian Menger n-groupoid (X, g) with a topology τf
generated by the family Φ of quasi-pseudometrics invariant either from the
right or from the left, then (X, g, τf ) is a topological Menger n-groupoid.

Remark 2.9. Proposition 2.2 and the above theorems also are valid in the
case of topologies generated by a family of pseudometrics.

Any i-solvable Menger n-groupoid is a commutative n-group derived
from its diagonal group (see [5]). Then there exists a binary group (G, ·)
such that G ⊃ X for which A = {a1 · a2 · . . . · an−1 : ai ∈ X, i ∈ Nn−1} is a
normal subgroup, and the quotient group of G/A is cyclic of order n−1 (see
for example [12]). For all y ∈ X, X = yA = Ay, and g(an1 ) = a1 ·a2 · . . . ·an,
where a1 · a2 · . . . · ak = ak1 is the product calculated in thee group (G, ·).
Such defined group (G, ·) is called the covering group for (X, g).

Based on these findings, we can prove the following result.

Proposition 2.10. Let (X, g) be i-solvable Menger n-groupoid and let f
be a left invariant quasi-pseudometric on X such that for each x, y ∈ X,
f(x, y) 6 1. If fG is an extension of f such that
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fG(yka1 · a2 · . . . · an−1, ykb1 · b2 · . . . · bn−1) = f(g(y, an−11 ), g(y, bn−11 ))

if k ∈ Nn−1, an−11 , bn−11 ∈ X, and fG(z, s) = 1 if z and s belong to different
cosets, then fG is a left-invariant quasi-pseudometric on G.

Proof. Let a Megner n-groupoid (X, g) be i-solvalbe and let (G, ·) be its
covering group. It’s clear that fG is well-defined on G×G, does not depend
on the choice of y ∈ X, is non-negative, and it is a quasi-pseudometric on G.
Moreover, if x, z belong to different cosets, then for any t ∈ G, the elements
tx, tz also belong to different cosets. Then fG(tx, tz) = 1 = fG(x, z). Now,
if x = yka1 · a2 · . . . · an−1, z = ykb1 · b2 · . . . · bn−1, t = ymc1 · c2 · . . . · cn−1,
where 1 6 k 6 n − 1, 1 6 m 6 n − 1, an−11 , bn−11 , cn−11 ∈ X, then tx =
ymc1·c2·. . .·cn−1yka1·a2·. . .·an−1. Since c1·c2·. . .·cn−1yk = ykd1·d2·. . .·dn−1,
for some dn−11 ∈ X, then then tx = ym+kd1 ·d2 · . . . ·dn−1yka1 ·a2 · . . . ·an−1.

Similarly, we obtain tz = ym+kd1 · d2 · . . . · dn−1ykb1 · b2 · . . . · bn−1.
Therefore,

fG(tx, tz) =

fG(ym+kd1 ·d2 ·. . .·dn−1a1 ·a2 ·. . .·an−1, ym+kd1 ·d2 ·. . .·dn−1b1 ·b2 ·. . .·bn−1) =

f(g(yd1 ·d2 · . . . ·dn−1a1 ·a2 · . . . ·an−1), g(yd1 ·d2 · . . . ·dn−1b1 ·b2 · . . . ·bn−1)) =

f(g(p1 ·p2 · . . . ·pn−1ya1 ·a2 · . . . ·an−1), g(p1 ·p2 · . . . ·pn−1yb1 ·b2 · . . . ·bn−1)) =

f(g(ya1 · a2 · . . . · an−1), g(yb1 · b2 · . . . · bn−1)) =

fG(g(yka1 · a2 · . . . · an−1), g(ykb1 · b2 · . . . · bn−1)) = fG(x, z),
where dn−11 ∈ Xn−1 such that yd1 · d2 · . . . · dn−1 = p1 · p2 · . . . · pn−1y, with
m+ k 6 n− 1.

If m+ k > n− 1, then
fG(tx, tz) =

fG(ym+k−(n−1)yn−1d1 ·d2 · . . . ·dn−1a1 ·a2 · . . . ·an−1, ym+k−(n−1)yn−1d1 ·d2·
. . . · dn−1b1 · b2 · . . . · bn−1) =

f(g(ynd1 ·d2 ·. . .·dn−1a1 ·a2 ·. . .·an−1), g(ynd1 ·d2 ·. . .·dn−1b1 ·b2 ·. . .·bn−1)) =

f(g(yn−1 · g(p1 · p2 · . . . · pn−1ya1 · a2 · . . . · an−1)), g(yn−1 · g(p1 · p2 · . . . ·
pn−1yb1 · b2 · . . . · bn−1))) =

f(g(p1 · p2 · . . . · pn−1ya1 ·a2 · . . . ·an−1), g(p1 · p2 · . . . · pn−1yb1 · b2 · . . . · bn−1))
= f(g(ya1 · a2 · . . . · an−1), g(yb1 · b2 · . . . · bn−1))

= fG(yka1 · a2 · . . . · an−1, ykb1 · b2 · . . . · bn−1) = fG(x, z),
where dn−11 ∈ X such that yd1 · d2 · . . . · dn−1 = p1 · p2 · . . . · pn−1y.
Thus, fG is a left invariant quasi-pseudometric on G.

We will say that the family of quasi-pseudometrics Φ on a Menger n-
groupoid (X, g) is right X-closed, if for all f ∈ Φ, an−11 ∈ X the map
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dan−1
1

defined by dan−1
1

(x, y) = f(g(x, an−11 ), g(y, an−11 )) for all x, y ∈ X, is
a pseudo-metric on (X, g).

Theorem 2.11. Let Φ be a right X-closed family of left-invariant quasi-
pseudometrics on a Menger n-groupoid (X, g) such that for some a ∈ X,
f ∈ Φ, k = 2, 3, . . . , n− 1, the map da,k defined by

da,k(x, y) = f(g(
k
a, x,

n−1−k
a ), g(

k
a, y,

n−1−k
a ))

is a quasi-pseudometric on (X, g). Then g is continuous in the topology τ
generated by Φ. Moreover, if (X, g) is associative and i-solvable, then on
the group (G, ·) there exists τG consistent with the semigroup structure, X
is an open subset of G and τ is a restriction topology on X from G.

Proof. According to Theorem 2.3 the operation g is continuous in (X, τ). If
(X, g) is an associative and i-solvable Menger n-groupoid, then there exists
an abelian binary group (G, ·), such that G ⊃ X. If ΦG = {fG} is a family
of quasi-pseudometrics on (G, ·), generated by Φ, then ΦG is right G-closed.
Let’s show it.

First, note that for any fG ∈ ΦG, the function fG
1+fG

∈ ΦG and satisfies
| fG1+fG

| 6 1. Therefore, without loss of generality, we can assume that every
quasi-pseudometric fG ∈ ΦG satisfies the inequality |fG| 6 1. Let x, z, t ∈
G. Then x = yka1 ·a2 ·. . .·an−1, z = ylb1 ·b2 ·. . .·bn−1, t = ymc1 ·c2 ·. . .·cn−1,
where 1 6 k 6 n− 1, 1 6 l 6 n− 1, 1 6 m 6 n− 1, an−11 , bn−11 , cn−11 ∈ X.
Thus y ∈ X.

If x, z belong to different cosets ykA, then xt and zt belong to different
cosets as well, and therefore fG(xt, zt) = 1.

If l = k, then x and z belong to some coset. In this case,
fG(xt, zt) =

fG(yka1 ·a2 ·. . .·an−1ymc1 ·c2 ·. . .·cn−1, ykb1 ·b2 ·. . .·bn−1ymc1 ·c2 ·. . .·cn−1) =

fG(yn−ma1 · a2 · . . . · an−1ymc1 · c2 · . . . · cn−1, yn−mb1 · b2 · . . . · bn−1ymc1 · c2·
. . . · cn−1) =

f(g(yn−ma1 · a2 · . . . · an−1ymc1 · c2 · . . . · cn−1), g(yn−mb1 · b2 · . . . · bn−1ymc1·
c2 · . . . · cn−1)) =

dcn−1
1

(g(yn−ma1 ·a2 · . . . ·an−1ymc1 ·c2 · . . . ·cn−1), g(yn−mb1 ·b2 · . . . ·bn−1ymc1·
c2 · . . . · cn−1)) =

(dcn−1
1

)yn−m−1(g(ya1 · a2 · . . . · an−1), g(yb1 · b2 · . . . · bn−1)) =

((dcn−1
1

)yn−m−1)G(yka1·a2·. . .·an−1, ykb1·b2·. . .·bn−1)=((dcn−1
1

)yn−m−1)G(x, z),

which belongs to ΦG since (dcn−1
1

)yn−m−1 ∈ Φ. Hence, ΦG is right G-closed.
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Since fG is an extension of the quasi-pseudometric f , the topology τG on
(G, ·), generated by the family ΦG induces a topology on X that coincides
with the topology generated by the family Φ.

Since fG(x, z) = 1 when x and z belong to different cosets ykA for
1 6 k 6 n− 1, each ykA is an open subset of G, and in particular, X is an
open subset of G.

The continuity of the multiplication follows from the Theorem 2.3 by
considering n = 2 and k ∈ {1, 2}. Therefore, (G, ·, τG) is a topological
semigroup.

We say that a Menger n-groupoid (X, g) is weakly left (respectively,
right)-invertible if for all elements a, b ∈ X there exist cn−21 ∈ X such that
g(cn−21 , a,X)∩ g(cn−21 , b,X) 6= ∅ (respectively, g(X, a, cn−21 )∩ g(X, b, cn−21 ) 6=
∅).

Theorem 2.12. An associative i-solvable Menger n-groupoid (X, g) with
a locally compact topology τ is a topological semigroup if all translations
are injective, open, and continuous. Additionally, if (X, g) is weakly left
(or weakly right)-invertible, then (X, g, τ) is topologically embeddable in a
locally compact binary group as an open set.

Proof. Let (X, g) be an associative i-solvable Menger n-groupoid. Then it
is a commutative Menger n-group derived from its diagonal group (X, · ) (cf.
[5]). Let τ be a locally compact topology onX such that the translations are
injective, open, and continuous. Then, by Ellis’s theorem [10], the binary
operation is continuous, and sequentially, g is continuous. Therefore, we
can conclude that (X, · , τ) is a topological semigroup, and in particular
(X, g, τ) is a topological group.

Now, consider a weakly right-invertible Menger n-groupoid (X, g). There-
fore, for any elements a, b ∈ X, and for certain sequence cn−21 ∈ X the
relation g(X, a, cn−21 ) ∩ g(X, b, cn−21 ) 6= ∅ holds. Thus, for some x, y ∈ X,
we have g(x, a, cn−21 ) = g(y, a, cn−21 ). Consequently, xacn−21 = xacn−21 in
(G, ·). Invoking the injectivity of the translations of X we obtain xa = yb
or Xa ∩Xb 6= ∅. Hence, by [14], (X, g, τ) is topologically embeddable in a
locally compact binary group as an open set.

This theorem can be considered an extension of Ellis’s theorem in [10]
to the case of Menger n-groupoids with locally compact topologies.
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Corollary 2.13. Let (X, g) be an associative, weakly left (or weakly right)-
invertible Menger n-quasigroup with a locally compact topology τ is topo-
logically embeddable in a locally compact binary group as an open set if all
translations are injective, open, and continuous in τ .

Theorem 2.14. An associative i-solvable Menger n-groupoid (X, g) with
a locally compact topology τ is a topological semigroup if all translations
are injective, open, and the operation g

(2)
is continuous. Additionally, if

for every x, y ∈ X and for every neighborhood V of point x there exists

a neighborhood V ′ of point y such that g(x,
n−1
y ) ∈

⋂
y′∈V ′

g(V,
n−1
y′ ). Then

(X, g, τ) is topologically embeddable in a locally compact binary group as an
open set.

Proof. Let (X, g) be an associative i-solvable Menger n-groupoid. Again,
from [5], it follows that (X, g) is a commutative Menger n-group derived
from its diagonal group (X, · ). Let τ be a locally compact topology on X
such that the translations are injective, open, and g(2) is continuous. Then
g is continuous, and according again to Ellis’s theorem the binary operation
is also continuous. Therefore, we can conclude that (X, · , τ) is a topological
semigroup, and in particular, (X, g, τ) is topological group.

If for every x, y ∈ X and for every neighborhood V of point x there exists

a neighborhood V ′ of point y such that g(x,
n−1
y ) ∈

⋂
y′∈V ′

g(V,
n−1
y′ ). Then

xy = g(x,
n−1
y ) ∈

⋂
y′∈V ′

g(V,
n−1
y′ ) =

⋂
y′∈V ′

V ·y′. As the diagonal-topological

semigroup (X, ·, τ) is commutative, then yx = g(x,
n−1
y ) ∈

⋂
y′∈V ′

y′ ·V . Con-

sequently, (X, ·, τ) verifies the condition F of [13]. Thus, (X, g, τ) is topo-
logically embeddable in a locally compact binary group as an open set.

Corollary 2.15. An associative Menger n-group (X, g) with a locally com-
pact topology τ is topologically embeddable in a locally compact binary group
as an open set if all translations are injective, open, the operation g(2) is
continuous, and the following condition is satisfied: For every x, y ∈ X and
for every neighborhood V of point x there exists a neighborhood V ′ of point

y such that g(x,
n−1
y ) ∈

⋂
y′∈V ′

g(V,
n−1
y′ ).
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On groups with the same type as large Ree groups

Ashraf Daneshkhah, Fatemeh Moameri and Hosein Parvizi Mosaed

Abstract. Let G be a finite group and nse(G) be the set of the number of elements
with the same order in G. In this article, we prove that the large Ree groups 2F4(q) with
an odd order component prime are uniquely determined by nse(2F4(q)) and their order.
As an immediate consequence, we verify Thompson’s problem (1987) for the large Ree
groups 2F4(q) with an odd order component prime.

1. Introduction

In 1987, J. G. Thompson possed a problem which is related to algebraic
number fields [15, Problem 12.37]:

For a finite group G and natural number n, set G(n) = {x ∈ G | xn = 1}
and define the type of G to be the function whose value at n is the order of
G(n). Is it true that a group is solvable if its type is the same as that of a
solvable one?

This problem links to the set nse(G) of the number of elements of the
same order in G. Indeed, it turns out that if two groups G and H are
of the same type, then nse(G) = nse(H) and |G| = |H|. Therefore, if
a group G has been uniquely determined by its order and nse(G), then
Thompson’s problem is true for G. One may ask this problem for non-
solvable groups, in particular, finite simple groups. In this direction, Shao
et al [17] studied finite simple groups whose order is divisible by at most
four primes. Following this investigation, such problem has been studied for
some other families of simple groups including Suzuki groups Sz(q), small
Ree groups 2G2(q) and Chevalley groups F4(q) with q = 24n + 1 prime
[2, 3, 6], see also [4, 7, 8, 10, 12, 16]. In this paper, we study this problem
for the large Ree groups 2F4(q), and prove that

2010 Mathematics Subject Classification: Primary 20D60; Secondary 20D06
Keywords: Ree groups, order element, order of group, prime graph



32 A. Daneshkhah, F. Moameri, H. Parvizi Mosaed

Theorem 1.1. Let G be a group with nse(G) = nse(2F4(q)) and |G| =
|2F4(q)|, where q = 22m+1 and q2 +

√
2q3 + q+

√
2q+ 1 or q2−

√
2q3 + q−√

2q + 1 is prime. Then G ∼= 2F4(q).

As noted above, as an immediate consequence of Theorem 1.1, we have

Corollary 1.2. If G is a group with the same type as 2F4(q), where q =
22m+1 and q2 +

√
2q3 + q +

√
2q + 1 or q2 −

√
2q3 + q −

√
2q + 1 is prime,

then G is isomorphic to 2F2(q).

Finally, we give some brief comments on the notation used in this paper.
Throughout this article all groups are finite. We denote a Sylow p-subgroup
of G by Gp. We also use np(G) to denote the number of Sylow p-subgroups
of G. For a positive integer n, the set of prime divisors of n is denoted by
π(n), and we set π(G) := π(|G|), where |G| is the order of G. We denote the
set of element orders of G by ω(G) known as spectrum of G. For i ∈ ω(G),
we denote the number of elements of order i in G by mi(G) and the set
of the number of elements with the same order in G by nse(G). In other
words, nse(G) = {mi(G) | i ∈ ω(G)}. The prime graph Γ(G) of a finite
group G is a graph whose vertex set is π(G), and two distinct vertices u
and v are adjacent if and only if uv ∈ ω(G). Assume further that Γ(G)
has t(G) connected components πi(G), for i = 1, 2, . . . , t(G). The positive
integers ni with π(ni) = πi(G) are called order components of G. In the case
where G is of even order, we always assume that 2 ∈ π1, and π1 is said to be
the even component of G. In this way, πi and ni are called odd components
and odd order components of G, respectively. Recall that nse(G) is the set
of the number of elements in G with the same order. In other word, nse(G)
consists of the numbers mi(G) of elements of order i in G, for i ∈ ω(G).
Here, ϕ is the Euler totient function.

2. Preliminaries

In this section, we state some useful lemmas which will be used in the proof
of the main theorem.

Lemma 2.1. [14, Main Theorem] The maximal subgroups of 2F4(q) with
q = 22m+1 > 8 are conjugate to one of the subgroups listed in Table 1.

Lemma 2.2. [5, Theorem 1] and [9, Theorem 2.7.6] Let G be a Frobenius
group of even order with kernel K and complement H. Then t(G) = 2,
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and π(H) and π(K) are vertex sets of the connected components of Γ(G).
Moreover, K is nilpotent and |H| divides |K| − 1.

Table 1: The maximal subgroups of 2F4(q) with q = 22m+1 > 8.
Maximal subgroup Conditions
[q11] : GL2(q)
[q10] : (Sz(q)× Zq−1)
SU3(q(), no.2,
(Zq+1 × Zq+1) : GL2(3)
(Zq−√2q+1 × Zq−√2q+1) : 4S4 q > 8

(Zq+√2q+1 × Zq+√2q+1) : 4S4

Z
q2−
√

2q3+q−
√
2q+1

: 12

Z
q2+
√

2q3+q+
√
2q+1

: 12

PGU3(q) : 2
Sz(q) o 2
Sp4(q) : 2
2F4(q0) q = qr0 with r prime

A group G is a 2-Frobenius group if there exists a normal series 1EHE
K EG such that G/H and K are Frobenius groups with kernels K/H and
H, respectively.

Lemma 2.3. [5, Theorem 2] Let G be a 2-Frobenius group of even order.
Then t(G) = 2, π1(G) = π(G/K)∪π(H) and π2(G) = π(K/H). Moreover,
G/K and K/H are cyclic groups, and |G/K| divides |Aut(K/H)|.

Lemma 2.4. [11, Theorem 9.1.2] Let G be a finite group, and let n be a
positive integer dividing |G|. If G(n) = {g ∈ G | gn = 1}, then n | |G(n)|.

Lemma 2.5. Let G be a finite group, and let i ∈ ω(G). Then mi(G) =
kϕ(i), where k is the number of cyclic subgroups of order i in G. Moreover,
ϕ(i) divides mi(G), and i divides

∑
j|i mj(G). In particular, if i > 2, then

mi(G) is even.

Proof. The proof is straightforward by Lemma 2.4.

Lemma 2.6. [1, Lemma 3.1] The order of 2F4(q) with q = 22m+1 > 8 is
coprime to 17.



34 A. Daneshkhah, F. Moameri, H. Parvizi Mosaed

3. Proof of the main result

Let q = 22m+1 > 8, and let p be a prime number. Suppose that p is
q2+

√
2q3+q+

√
2q+1 or q2−

√
2q3+q−

√
2q+1, and set F := 2F4(q). Let G

be a finite group with nse(G) = nse(F ) and |G| = |F |. We note that 2F4(q)
with q = 22m+1 > 8 is of order q12(q−1)(q2+1)(q3+1)(q4−1)·f+(q)·f−(q),
where

fε(q) = q2 + ε
√

2q3 + q + ε
√

2q + 1, (3.1)

with ε = ±. We observe by [18] that the simple group 2F4(q) with q =
22m+1 > 8 has two odd order components, namely, f+(q) and f−(q).

Lemma 3.1. Let F := 2F4(q) with q = 22m+1 > 8, and let fε(q) be as
in (3.1). If p = fε(q) is prime, then

(a) mp(F ) = (p− 1)|F |/(12p);

(b) p | mi(F ) for every i ∈ ω(F ) \ {1, p}.

Proof. By Lemma 2.1, Fp is a cyclic group of order p, and so mp(F ) =
ϕ(p)np(F ) = (p− 1)np(F ). According to Lemma 2.1, |NF (Fp)| = 12p, and
so np(F ) = |F |/12p. If i ∈ ω(F ) \ {1, p}, then [13] implies that p is an
isolated vertex of Γ(F ), and so p - i and pi /∈ ω(F ). Thus Fp acts fixed
point freely on the set of elements of order i in G by conjugation, and hence
|Fp| | mi(F ). Therefore, p | mi(F ).

Lemma 3.2. Let F := 2F4(q), and let G be a group such that |G| = |F |
and nse(G) = nse(F ). Let also p be fε(q) defined as in (3.1). If p is prime,
then

(a) m2(G) = m2(F );

(b) mp(G) = mp(F );

(c) np(G) = np(F );

(d) p is an isolated vertex of Γ(G);

(e) p | mi(G) for every i ∈ ω(G) \ {1, p}.

Proof. According to Lemma 2.5, for any i ∈ ω(G), i > 2 if and only if
mi(G) is even. So m2(G) = m2(F ). By Lemma 2.5, (mp(G), p) = 1, and
so p - mp(G). Then by Lemma 3.1, mp(G) ∈ {m1(F ),mp(F )}, and since
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mp(G) is even, we deduce that mp(G) = mp(F ). Since Gp and Fp are
cyclic groups of order p, it follows that mp(G) = ϕ(p)np(G) = ϕ(p)np(F ) =
mp(F ). So np(G) = np(F ). If p is not an isolated vertex of Γ(G), then there
exists r ∈ π(G) − {p} such that pr ∈ ω(G). Thus mpr(G) = ϕ(pr)np(G)k,
where k is the number of the cyclic subgroups of order r in CG(Gp). Since
np(G) = np(F ) = |F |/(12p) and |F | = |G|, we conclude that np(G) =
|G|/(12p). Thus (p − 1)(r − 1)|G|/(12p) divides mpr(G). On the other
hands, by Lemma 3.1, p is a divisor of mpr(G). Then p(p−1)(r−1)|G|/12p
divides mpr(G) < |G|, and this implies that r = 2 and p < 13, which is a
contradiction. Hence p is an isolated vertex of Γ(G).

Proof of Theorem 1.1. We first prove that the group G is neither a Frobe-
nius group, nor a 2-Frobenius group. Assume to the contrary that G is a
Frobenius group or a 2-Frobenius group. If G is a Frobenius group with
kernel K and complement H. Then Lemma 2.2 implies that t(G) = 2, π(H)
and π(K) are vertex sets of the connected components of Γ(G). Since p is an
isolated vertex of Γ(G), we deduce that |K| = p and |H| = |F |/p, or |H| = p
and |K| = |F |/p. By Lemma 2.2, |F |/fε(q) divides fε(q)−1 or fε(q) divides
[|F |/fε(q)]−1. This implies that p | 11, which is a contradiction. If G is a 2-
Frobenius group, then Lemma 2.3 implies that t(G) = 2 and G has a normal
series 1EHEKEG such that G/H andK are Frobenius groups with kernels
K/H and H, respectively, π1(G) = π(G/K)∪π(H), π2(G) = π(K/H) and
|G/K| divides |Aut(K/H)|. Since p is an isolated vertex of Γ(G), we deduce
that |K/H| = fε(q) and |H| = q12(q−1)(q2+1)(q4−1)(q3+1)F−ε(q)/|G/K|.
Since |G/K| divides |Aut(K/H)|, we deduce that |G/K| divides p− 1. On
the other hand, since K is a Frobenius group with kernel H, Lemma 2.2
implies that p divides [q12(q− 1)(q2 + 1)(q4− 1)(q3 + 1)F−ε(q)/|G/K|]− 1,
and hence p divides 12− |G/K|, which is a contradiction.

Therefore, G is neither a Frobenius group, nor a 2-Frobenius group, and
hence by [18, Theorem A], G has a normal series 1 E H E K E G such
that H and G/K are π1-groups, K/H is a non-abelian simple group, H
is a nilpotent group and |G/K| divides |Out(K/H)|. Moreover, any odd
component of G is also an odd component of K/H. Since p is an isolated
vertex of Γ(G), we deduce that p | |K/H| and t(K/H) ≥ 2. The connected
components of the simple group K/H can be read off from [13, 18], and in
what follows we discuss all these possibilities. For convenience, we use Lie
notation for the finite simple groups of Lie type.

Let K/H be a sporadic simple group or one of the simple groups A2(2),
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A2(4), 2A3(2), 2A5(2), E7(2), E7(3), 2E6(2) and 2F4(2)′. Then fε(q) is equal
to one of the prime numbers 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 59, 67, 71, 73, 127, 757 and 1093. This is possible only for q = 8 when
F−(q) = 37 and K/H is isomorphic to J4 or Ly in which case |K/H| does
not divide |G|.

Let now K/H be an alternating group of degree n. Then since by
Lemma 2.6, 17 /∈ π(G), it follows that n < 17, and this violates the choice
of p which is at least 37.

Let K/H be a finite simple classical group over a finite field of size q′.
Then we easily observe by Lemma 2.6 that 17 - q′. Moreover, if q′16 − 1
is a divisor of |K/H|, then by the Fermat’s little theorem, q′16 − 1 ≡ 0
(mod 17), and so 17 | |K/H| which violates Lemma 2.6. Therefore, we
have one of the following possibilities:

K/H Condition
An(q′) 1 6 n 6 16
2An(q′) 1 6 n 6 16
Cn(q′) 2 6 n 6 7
Bn(q′) 2 6 n 6 7, q′ odd
Dn(q′) 3 6 n 6 8
2Dn(q′) 2 6 n 6 8

Suppose that K/H is isomorphic to An(q′). If n = 1, then p is q′, (q′±1)
or (q′ ± 1)/2, and so p∓ 1 or 2p∓ 1 divides |K/H|, so does |G|, which is a
contradiction. If 2 6 n 6 16 and (n, q′) 6= (2, 2), (2, 4), then n = p′ or p′−1,
and so p is (q′p

′ − 1)/[(q′ − 1)(p′, q′ − 1)] or (q′p
′ − 1)/(q′ − 1). Therefore,

(p′, q′ − 1)p− 1 or p− 1 divides |K/H|, respectively. But none of these is a
divisor of |G|, which is a contradiction.

Suppose that K/H is isomorphic to 2An(q′) for n = p′, p′ − 1 with
(n, q′) 6= (3, 2), (5, 2). Then p is (q′p

′
+ 1)/[(q′ + 1)(p′, q′ + 1)] or (q′p

′
+

1)/(q′+ 1), which is impossible as neither (p′, q′− 1)p− 1, nor p− 1 divides
|G|.

Suppose that K/H is isomorphic to Bn(q′) or Cn(q′). Then p is (q′n ±
1)/(2, q′−1), and so (2, q′−1)p∓1 has to divide |G|, which is a contradiction.

Suppose that K/H is isomorphic to Dn(q′) with n = p′, p′ + 1 and
q′ = 2, 3, 4. Then p is (q′p

′ − 1)/(4, q′ − 1), and so (4, q′ − 1)p + 1 has to
divide |G|, which is a contradiction.
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Suppose that K/H is isomorphic to 2Dn(q′). Then p is (q′p
′
+1)/(2, q′−

1), 2n
′−1 + 1, 2n

′
+ 1, (3n + 1)/4 or (3n−1 + 1)/2. (2, q′ − 1)p − 1, p − 1,

p+ 1, 2p− 1, 4p− 1 has to divide |G|, which is a contradiction.

If K/H is isomorphic to G2(q
′), F4(q

′), E6(q
′), 2E6(q

′) or 3D4(q
′), then

p is q′2 ± q′ + 1, q′4 − q′2 + 1 or q′4 + 1, q′6 + q′3 + 1 or (q′6 + q′3 + 1)/3,
(q′6 ± q′3 + 1)/(3, q ∓ 1) or q′4 − q′2 + 1. So p − 1 or 3p − 1 is a divisor of
|G|, which is a contradiction.

Suppose that K/H is isomorphic to E8(q
′). Then p is q′8 ± q′7 ∓ q′5 −

q′4∓ q′3± q′+ 1, q′8− q′4 + 1 or q′8− q′6 + q′4− q′2 + 1. If p is q′8− q′4 + 1
or q′8 − q′6 + q′4 − q′2 + 1, then p − 1 divides |G|, which is impossible. If
p = q′8 ± q′7 ∓ q′5 − q′4 ∓ q′3 ± q′ + 1, then 2m+1(2m ± 1)(22m+1 + 1) =
q′(q′7 ± q′6 ∓ q′4 − q′3 ∓ q′2 ± 1), so we have three possibilities:

(1) (q′, 2m+1) 6= 1. Since (2m+1, 2m ± 1) = (2m+1, 22m+1 + 1) = 1, we
have q′ = 2m+1. This implies that q′120 | |K/H| so does |G|, which is a
contradiction.

(2) (q′, 22m+1 + 1) 6= 1. If 3 - q′, then q′ | 22m+1 + 1 = q + 1 and q′2 - q + 1
because (22m+1 + 1, 2m ± 1) = 1 or 3. This also requires q′120 | |G|, which
is a contradiction. If 3 | q′, then q′ = 3m

′ for some positive integer m′. If
(q′, 22m+1 + 1) > 3, then 3m

′−1 | 22m+1 + 1 = q+ 1 but 3m
′+1 - q+ 1. Hence

q′120 | |G|, which is impossible. We note that the case where q′ = 3 and
(q′, 22m+1 + 1) = 3 cannot occur as p = q2±

√
2q3 + q±

√
2q+ 1 is a prime

number and q = 22m+1 > 2. If q′ = 3m
′
> 3 and (q′, 22m+1 + 1) = 3, then

3m
′−1 | 2m ± 1 but 3m

′+1 - 2m ± 1. Since |K/H| | |G| we have q′120 | |G|,
which is a contradiction.

(3) (q′, 2m ± 1) 6= 1. This case can be ruled out by the same manner as in
case (2).

Suppose that K/H is isomorphic to 2B2(q
′) with q′ = 22m

′+1 . Then
p = q′ − 1 or q′ ±

√
2q′ + 1. If p = q′ − 1, then 22m

′+1 − 2 = 2m+1(2m ±
1)(22m+1 + 1), and so m = 0, which is a contradiction. If p = q′±

√
2q′+ 1,

then 2m
′+1(2m

′ ± 1) = 2m+1(2m ± 1)(22m+1 + 1) implying that m = m′,
which is a contradiction.

Suppose that K/H is isomorphic to 2G2(q
′) with q′ = 32m

′+1. Then
p = q′ ±

√
3q′ + 1, and so 3m

′+1(3m
′ ± 1) = 2m+1(2m ∓ 1)(22m+1 + 1).

Therefore 2m+1 | 3m
′ ± 1. Note that (2m ∓ 1, 22m+1 + 1) = 1 or 3. If

3m
′ | 2m∓1, then m = m′ = 1, which is impossible. If 3m

′ | 22m+1 +1, then
q′ | (q + 1)2 but q′2 - (q + 1)2. Since q′3 | |K/H|, we have q′3 | |G|, which is
a contradiction.
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Therefore, K/H is isomorphic to 2F4(q
′), and hence q′ = q. This forces

H = 1, and hence G = K ∼= 2F4(q), as claimed.
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On pseudo-ideals in partially ordered ternary
semigroups

Machchhindra Gophane and Dattatray Shinde

Abstract. We study the properties of different types of pseudo-ideals of a partially
ordered ternary semigroup and prove that the space of all strongly irreducible pseudo-
ideals of a partially ordered ternary semigroup is a compact space.

1. Introduction

In [2], Hewitt and Zuckerman specified the method of construction of ternary
semigroups from binary and specified various connections between such
semigroups. Ternary semigroups are a special case of n-ary semigroups.
So many results on ternary semigroups has an analogous version for n-ary
semigroups. F.M. Sioson [5] proved some results on ideals in ternary semi-
groups. In [1], W.A. Dudek and I.M. Groździńska characterized some classes
of regular ternary semigroups by ideals can be deduced from general results
proved for n-ary semigroups. The notion of prime, semiprime and strongly
prime bi-ideals in ternary semigroups was introduced by M. Shabir and M.
Bano in [4]. The concept of ordered ternary semigroups was developed by
A. Iampan in [3].

Our aim of this article is to introduce the concepts of prime pseudo-ideals
and irreducible pseudo-ideals in a partially ordered ternary semigroup and
to study their properties. We also prove that the space of all strongly irre-
ducible pseudo-ideals of a partially ordered ternary semigroup is a compact
space.

2020 Mathematics Subject Classification: 20M12, 20N99, 06F99.
Keywords: partially ordered ternary semigroup, pseudo-ideal, prime pseudo-ideal,
irreducible pseudo-ideal.
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2. Preliminaries

A non-empty set T with a ternary operation [ ] : T × T × T −→ T is called
a ternary semigroup if [ ] satisfies the associative law, [abcde] = [[abc]de] =
[a[bcd]e] = [ab[cde]], for all a, b, c, d, e ∈ T .

For non-empty subsets X,Y and Z of a ternary semigroup T , [XY Z] =
{[xyz] : x ∈ X , y ∈ Y and z ∈ Z}. We write, [XY Z] as XY Z, [xyz] = xyz
and [XXX] = X3.

A ternary semigroup T is said to be a partially ordered ternary semigroup
if there exist a partially ordered relation 6 on T such that, a 6 b⇒ xya 6
xyb, xay 6 xby, axy 6 bxy for all a, b, x, y ∈ T . In this article, we write T
for a partially ordered ternary semigroup, unless otherwise specified.

An element e ∈ T is said to be an identity element of T if exx = xxe =
xex = x for all x ∈ T.

The set {t ∈ T : t 6 x, for somex ∈ X} is denoted by (X]. A non-
empty subset X of T is said to be a partially ordered ternary subsemigroup
of T , if [XXX] ⊆ X and (X] = X. A non-empty subset I of T is said to
be a partially ordered left (respectively, right, lateral) ideal of T if TTI ⊆ I
(respectively, ITT ⊆ I, TIT ⊆ I ) and (I] = I.

A non-empty subset I of T is said to be ideal of T if it is a left ideal, a
right ideal and a lateral ideal of T.

A partially ordered ternary subsemigroup I of T is called a left (re-
spectively a right, a lateral) pseudo-ideal of T if [xxxxI] ⊆ I (respectively,
[Ixxxx] ⊆ I, [xxIxx] ⊆ I ) for all x ∈ T . A pseudo-ideal I of T is said to
be proper pseudo-ideal of T if it differs from T .

A non-empty subset I of T is said to be two sided pseudo-ideal of T , if
it is both left and right pseudo-ideal of T . A non-empty subset I of T is
said to be pseudo-ideal of T , if I is a left, a right and a lateral pseudo-ideal
of T . Note that, the non-empty intersection of an arbitrary collection of
pseudo-ideals of T is a pseudo-ideal of T .

Example 2.1. Let N be the set of all natural numbers. Define ternary
operation [ ] on N by [xyz] = xyz for all x, y, z ∈ N, where · is a usual
multiplication and a usual partial ordering relation 6 on N. Then N is a
partially ordered ternary semigroup and I = 3N is a pseudo-ideal of N.

Definition 2.2. A proper pseudo-ideal I of a partially ordered ternary
semigroup T is called

(i) prime pseudo-ideal of T if XY Z ⊆ I implies X ⊆ I or Y ⊆ I or Z ⊆ I
for any pseudo-ideals X,Y, Z of T ,
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(ii) strongly prime pseudo-ideal of T if XY Z ∩ Y ZX ∩ ZXY ⊆ I implies
X ⊆ I or Y ⊆ I or Z ⊆ I for any pseudo-ideals X,Y, Z of T ,

(iii) semiprime pseudo-ideal of T if X is a pseudo-ideal of T and Xn ⊆ I
implies X ⊆ I for some odd natural number n.

3. Main Results

Definition 3.1. A proper pseudo-ideal I of T is said to be irreducible
(respectively, strongly irreducible) pseudo-ideal of T if X ∩ Y ∩ Z = I (re-
spectively X ∩ Y ∩ Z ⊆ I) implies X = I or Y = I or Z = I (respectively
X ⊆ I or Y ⊆ I or Z ⊆ I) for all pseudo-ideals X,Y, Z of T .

Remark 3.2. Every strongly irreducible pseudo-ideal of T is an irreducible
pseudo-ideal of T but converse is not true in general.

Theorem 3.3. Let X be a proper pseudo-ideal of T . For any t(6= 0) ∈ T \X
there exists an irreducible pseudo-ideal I of T such that X ⊆ I and t 6∈ I.

Proof. Let I = {Xα : Xα is a pseudo-ideal of T,X ⊆ Xα, t 6∈ Xα}, where
α ∈ ∆ is any indexing set. As X is a pseudo-ideal of T and t 6∈ X, we have
X ∈ I, so I 6= ∅. Evidently I is partially ordered set under the inclusion
of sets. If {Xi : i ∈ ∆} is a totally ordered subset (chain) of I then

⋃
i∈∆

Xi

is a pseudo-ideal of T containing X and t 6∈
⋃
i∈∆

Xi. Therefore
⋃
i∈∆

Xi is an

upper bound of {Xi : i ∈ ∆}. Thus every chain in I has an upper bound
in I. Hence by Zorn’s Lemma, there exists a maximal element say I in the
collection I. This shows that I is a pseudo-ideal of T such that X ⊆ I and
t 6∈ I.

Now we show that I is an irreducible pseudo-ideal of T . Let I1, I2 and I3

be any three pseudo-ideals of T such that I = I1∩I2∩I3 then I ⊆ I1, I ⊆ I2

and I ⊆ I3. If I1, I2 and I3 properly contain I, then according to hypothesis
t ∈ I1, t ∈ I2 and t ∈ I3. Thus t ∈ I1 ∩ I2 ∩ I3 = I. Which contradicts to
the fact that t 6∈ I. Therefore either I = I1 or I = I2 or I = I3. Hence I is
an irreducible.

Theorem 3.4. Any proper pseudo-ideal of T is the intersection of all irre-
ducible pseudo-ideals containing it.
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Proof. Let X be the any proper pseudo-ideal of T and {Xi : i ∈ ∆} be the
family of all irreducible pseudo-ideals of T containing X. Then X ⊆

⋂
i∈∆

Xi.

If X (
⋂
i∈∆

Xi then there exists t( 6= 0) ∈
⋂
i∈∆

Xi such that t 6∈ X. This

implies t ∈ Xi ∀i ∈ ∆. Since t 6∈ X, then by Theorem 3.3, there exists
an irreducible pseudo-ideal say Y of T containing X but not containing
t. This is a contradiction to t ∈ Xi ∀i ∈ ∆. Thus

⋂
i∈∆

Xi ⊆ X. Hence

X =
⋂
i∈∆

Xi.

Theorem 3.5. Every strongly irreducible semiprime pseudo-ideal of T is a
strongly prime pseudo-ideal of T .

Proof. Let I be a strongly irreducible semiprime pseudo-ideal of T . If X,Y
and Z are three pseudo-ideals of T such that [XY Z]∩ [Y ZX]∩ [ZXY ] ⊆ I.
Then (X∩Y ∩Z)3 = [(X∩Y ∩Z)(X∩Y ∩Z)(X∩Y ∩Z)] ⊆ [XY Z]. Similarly
(X ∩ Y ∩ Z)3 ⊆ [Y ZX] and (X ∩ Y ∩ Z)3 ⊆ [ZXY ]. This proves that
(X ∩Y ∩Z)3 ⊆ [XY Z]∩ [Y ZX]∩ [ZXY ] ⊆ I. Therefore (X ∩Y ∩Z)3 ⊆ I.
Since I is a semiprime pseudo-ideal, (X ∩ Y ∩ Z) ⊆ I. Also since I is a
strongly irreducible pseudo-ideal of T . Therefore, by definition of strongly
irreducible pseudo-ideal, either X ⊆ I or Y ⊆ I or Z ⊆ I. Hence I is a
strongly prime pseudo-ideal of T.

Corollary 3.6. Every strongly irreducible semiprime pseudo-ideal of T is
prime pseudo-ideal of T .

Definition 3.7. A pseudo-ideal X of partially ordered ternary semigroup
T is called idempotent if X3 = X.

Theorem 3.8. The following assertions for a partially ordered ternary
semigroup T with identity are equivalent.

(i) Every pseudo-ideal of T is idempotent.
(ii) For every three pseudo-ideals X,Y, Z of T ,

X ∩ Y ∩ Z ⊆ [XY Z] ∩ [Y ZX] ∩ [ZXY ].

(iii) Every proper pseudo-ideal of T is semiprime.
(iv) Each proper pseudo-ideal of T is the intersection of all irreducible

semiprime pseudo-ideals of T which contain it.
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Proof. (i)⇒ (ii): Suppose that, every pseudo-ideal of T is idempotent. Let
X,Y and Z be three pseudo-ideals of T. Then X ∩ Y ∩ Z is a pseudo-ideal
of T , so X∩Y ∩Z = (X∩Y ∩Z)3 = [(X∩Y ∩Z)(X∩Y ∩Z)(X∩Y ∩Z)] ⊆
[XY Z]. Similarly X ∩Y ∩Z ⊆ [Y ZX] and X ∩Y ∩Z ⊆ [ZXY ]. Therefore
X ∩ Y ∩ Z ⊆ [XY Z] ∩ [Y ZX] ∩ [ZXY ].

(ii)⇒ (i): Let X be a pseudo-ideal of T. Then from (ii), X = X ∩X ∩
X ⊆ [XXX] ∩ [XXX] ∩ [XXX] = [XXX] = X3 ⇒ X ⊆ X3. As X be
a pseudo-ideal of T , so X3 ⊆ X. Thus X3 = X. This shows that every
pseudo-ideal of T is idempotent.

(i) ⇒ (iii): Suppose that, every pseudo-ideal of T is idempotent. Let
X be a proper pseudo-ideal of T . Let Y be a pseudo-ideal of T such that
Y 3 ⊆ X, then by hypothesis Y 3 = Y. Thus Y ⊆ X. This shows that X is
semiprime pseudo-ideal of T . Hence every pseudo-ideal of T is semiprime.

(iii)⇒ (iv): Suppose that each proper pseudo-ideal of T is semiprime.
By Theorem 3.4, any proper pseudo-ideal X of T is the intersection of all
irreducible pseudo-ideals of T containing it. By (iii), every proper pseudo-
ideal of T is the intersection of all irreducible semiprime pseudo-ideals of T
which containing it.

(iv) ⇒ (i): Suppose that each proper pseudo-ideal of T is the intersec-
tion of all irreducible semiprime pseudo-ideals of T which contain it. Let
X be a pseudo-ideal of T . Therefore it is the intersection of all irreducible
semiprime pseudo-ideals of T which contain it. Therefore X is a semiprime
pseudo-ideal of T . As X3 ⊆ X3 ⇒ X ⊆ X3 but X3 ⊆ X always. This
shows that X = X3. Hence every pseudo-ideal of T is idempotent.

Theorem 3.9. If every pseudo-ideal of T is strongly prime pseudo-ideal of
T then each pseudo-ideal of T is idempotent.

Proof. Suppose that, each pseudo-ideal of T is strongly prime, then each
pseudo-ideal of T is semiprime. Thus by Theorem 3.8, every pseudo-ideal
of T is idempotent.

Theorem 3.10. If every pseudo-ideal of T is idempotent and the set of
pseudo-ideals of T is totally ordered under set inclusion then each pseudo-
ideal of T is strongly prime pseudo-ideal of T .

Proof. Suppose that every pseudo-ideal of T is idempotent and the set of
pseudo-ideals of T is totally ordered under set inclusion. Let I,X, Y and
Z be pseudo-ideals of T such that [XY Z] ∩ [Y ZX] ∩ [ZXY ] ⊆ I. As
every pseudo-ideal of T is idempotent so, X ∩ Y ∩ Z is idempotent. Then
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X ∩ Y ∩ Z = (X ∩ Y ∩ Z)3 = [(X ∩ Y ∩ Z)(X ∩ Y ∩ Z)(X ∩ Y ∩ Z)] ⊆
[XY Z]. Similarly X ∩Y ∩Z ⊆ [Y ZX] and X ∩Y ∩Z ⊆ [ZXY ]. Therefore
X∩Y ∩Z ⊆ [XY Z]∩ [Y ZX]∩ [ZXY ] ⊆ I. As the set of all pseudo-ideal of
T is totally ordered under set inclusion, therefore for pseudo-ideals X,Y, Z
of T , we have the following six possibilities,
1) X ⊆ Y ⊆ Z, 2) X ⊆ Z ⊆ Y, 3) Y ⊆ X ⊆ Z
4) Y ⊆ Z ⊆ X, 5) Z ⊆ X ⊆ Y, 6) Z ⊆ Y ⊆ X.

In such cases, we have respectively,
1) X ∩ Y ∩ Z = X, 2) X ∩ Y ∩ Z = X, 3) X ∩ Y ∩ Z = Y,
4) X ∩ Y ∩ Z = Y, 5) X ∩ Y ∩ Z = Z, 6) X ∩ Y ∩ Z = Z.

Therefore X ∩Y ∩Z = X or X ∩Y ∩Z = Y or X ∩Y ∩Z = Z. Thus from
X ∩ Y ∩ Z ⊆ I, either X ⊆ I or Y ⊆ I or Z ⊆ I. This shows that I is a
strongly prime pseudo-ideal of T .

Theorem 3.11. If the set of pseudo-ideals of T is totally ordered under
set inclusion then every pseudo-ideal of T is idempotent if and only if each
pseudo-ideal of T is prime.

Proof. Suppose that every pseudo-ideal of T is idempotent. Let I,X, Y and
Z be pseudo-ideals of T such that XY Z ⊆ I. As every pseudo-ideal of T is
idempotent so, X∩Y ∩Z is idempotent. Then X∩Y ∩Z = (X∩Y ∩Z)3 =
[(X∩Y ∩Z)(X∩Y ∩Z)(X∩Y ∩Z)] ⊆ XY Z ⊆ I. Therefore X∩Y ∩Z ⊆ I.
As in the proof of the Theorem 3.10 we get X∩Y ∩Z = X or X∩Y ∩Z = Y
or X ∩ Y ∩ Z = Z. Thus from X ∩ Y ∩ Z ⊆ I, either X ⊆ I or Y ⊆ I or
Z ⊆ I. This shows that I is a prime pseudo-ideal of T .

Conversely, suppose that every pseudo-ideal of T is a prime pseudo-
ideal of T . Since the set of pseudo-ideals of T is totally ordered under
set inclusion, therefore the concepts of primeness and strongly primeness
coincide. Hence by Theorem 3.9, every pseudo-ideal of T is idempotent.

Definition 3.12. An proper pseudo-ideal X of T is said to be maximal
pseudo-ideal of T if X is not properly contained in any proper pseudo-ideal
of T.

Theorem 3.13. Every maximal pseudo-ideal X of T is irreducible pseudo-
ideal of T .

Proof. Let X be a maximal pseudo-ideal of T . Suppose X is not irreducible
pseudo-ideal of T . i.e. for any three pseudo-ideals A,B and C of T such
that A ∩ B ∩ C = X ⇒ A 6= X,B 6= X and C 6= X ⇒ X ⊂ A ⊂ T,X ⊂
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B ⊂ T,X ⊂ C ⊂ T.Which is contradiction to X be a maximal pseudo-ideal
of T . Hence X is an irreducible pseudo-ideal of T .

Definition 3.14. Let X be the non-empty subset of T . Then the intersec-
tion of all pseudo-ideals of T containing X is the smallest pseudo-ideal of
T containing X. This pseudo-ideal of T is called the pseudo-ideal of T gen-
erated by X and it is denoted by (X)pi. A pseudo-ideal I of T is said to be
the principal pseudo-ideal generated by an element x if I is a pseudo-ideal
generated by {x} for some x ∈ T and is denoted by (x)pi.

Let A be the set of all pseudo-ideals of T and B be the set of all strongly
irreducible pseudo-ideals of T . For each X ∈ A, we define ΨX = {Y ∈ B :
X * Y }

Theorem 3.15. The family, J(B) = {ΨX : X ∈ A} forms a topology on
the set B.

Proof. (i) As {0} ∈ A, so Ψ{0} = {Y ∈ B : {0} * Y } = ∅. Thus ∅ ∈ J(B).

(ii) Since T ∈ A, we have ΨT = {Y ∈ B : T * Y } = B because B is
the collection of all proper strongly irreducible pseudo-ideals of T . Thus
B ∈ J(B).

(iii) Let ΨX1 ,ΨX2 ∈ J(B). We show that ΨX1 ∩ ΨX2 ∈ J(B). Let Y ∈
ΨX1 ∩ ΨX2 then Y ∈ B such that X1 * Y and X2 * Y . Suppose that
X1 ∩ X2 ⊆ Y . Now, we have X1 ∩ X2 ∩ T = X1 ∩ X2 ⊆ Y . Since Y is a
strongly irreducible pseudo-ideal of T , therefore either X1 ⊆ Y or X2 ⊆ Y
or T ⊆ Y . But T * Y (since Y is proper). Therefore X1 ⊆ Y or X2 ⊆ Y ,
which is a contradiction. HenceX1∩X2 * Y . Therefore Y ∈ ΨX1∩X2 . Thus
ΨX1 ∩ΨX2 ⊆ ΨX1∩X2 . On the other hand if Y ∈ ΨX1∩X2 then Y ∈ B and
X1 ∩X2 * Y . This implies that X1 * Y and X2 * Y . Therefore Y ∈ ΨX1

and Y ∈ ΨX2 ⇒ Y ∈ ΨX1 ∩ΨX2 . Hence ΨX1∩X2 ⊆ ΨX1 ∩ΨX2 .This shows
that ΨX1 ∩ΨX2 = ΨX1∩X2 . Thus ΨX1 ∩ΨX2 ∈ J(B).

(iv) Let {Xα}α∈∆ (where ∆ is any indexing set.) be family of pseudo-ideals
of T and {ΨXα : α ∈ ∆} ⊆ J(B). Then

⋃
α∈∆ ΨXα = {Y ∈ B : Xα * Y

for some α ∈ ∆} = {Y ∈ B :
(⋃

α∈∆Xα

)
pi

* Y } = Φ(
⋃
α∈∆Xα)

pi

∈

J(B), where
(⋃

α∈∆Xα

)
pi
is the pseudo-ideal of T generated by

(⋃
α∈∆Xα

)
.

Therefore from (i), (ii), (iii) and (iv), we get the set J(B) forms a topology
on B.
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Theorem 3.16. If T is partially ordered ternary semigroup with identity
then B is a compact space.

Proof. Suppose that {ΨXk : k ∈ ∆} is an open covering of B, where ∆
is an indexing set. That is B =

⋃
k∈∆ ΨXk . By Theorem 3.15, ΨT = B,

therefore ΨT =
⋃
k∈∆ ΨXk ⇒ ΨT = Ψ(

⋃
k∈∆Xk)pi

⇒ T =
(⋃

k∈∆Xk

)
pi
. As

e ∈ T, e ∈
(⋃

k∈∆Xk

)
pi
. Hence e ∈ (

⋃n
i=1Xi)pi ⇒ T = (

⋃n
i=1Xi)pi ⇒

B =
⋃n
k=1 ΨXk . This shows that every open cover of B has finite subcover.

Hence B is compact space.
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Prime one-sided ideals in ordered semigroups

Panuwat Luangchaisri and Thawhat Changphas

Abstract. We prove that the following are equivalent: (1) an ordered semigroup S with
zero and identity is right weakly regular; (2) (AA] = A for any right ideal A of S; (3)
A ∩ I = (AI] for any right ideal A and two-sided ideal I of S; (4) B ∩ I ⊆ (BI] for any
bi-ideal B and two-sided ideal I of S; (5) B∩I∩A ⊆ (BIA] for any bi-ideal B, right ideal
A and two-sided ideal I of S; and prove that S is a fully prime right ordered semigroup
if and only if S is right weakly regular and the set of all two-sided ideals of S is totally
ordered.

1. Introduction

One-sided ideals of a prime type of a ring have been studied by K. Koh in
[6]. One-sided prime ideals have been considered by J. Dauns in [3], the
author considered prime right ideals of a ring. F. Hansen [4] studied one-
sided prime ideals, the paper contained some results on prime right ideals in
a weakly regular ring. W.D. Blair and H. Tsutsui studied fully prime rings,
it was shown a necessary and sufficient condition for a ring to be fully prime
is that every ideal is idempotent and the set of ideals is totally ordered [2].
F. Alarcan and D. Polkawska described fully prime semirings, the authors
characterized semirings where every ideal is prime (fully prime semirings)
as those having a totally ordered lattice with every ideal idempotents [1].
Recently, prime one-sided ideals in a semiring and a Γ-semiring have been
introduced and studied by R. Jagatap and Y. Pawar in [5] and by M. Shabir
and M.S. Iqbal in [7]. An ordered semigroup (S, .,6) is a semigroup (S, .)
together with an ordered relation 6 on S which is compatible with the
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Keywords: ordered semigroup, prime right ideal, semiprime right ideal, right weakly
regular, irreducible, strongly irreducible, fully prime right
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semigroup operation. In this paper, we consider prime one-sided ideals in
an ordered semigroup. Indeed, we mainly consider right weakly regular
ordered semigroups and fully prime right ordered semigroups. Let S be an
ordered semigroup with zero and identity. It is proved that the following
are equivalent: (1) S is right weakly regular; (2) (AA] = A for any right
ideal A of S; (3) A ∩ I = (AI] for any right ideal A and a two-sided ideal
I of S; (4) B ∩ I ⊆ (BI] for any bi-ideal B and two-sided ideal I of S; (5)
B ∩ I ∩ A ⊆ (BIA] for any bi-ideal B, right ideal A and two-sided ideal I
of S. Moreover, a characterization of fully prime right ordered semigroups
will be given in terms of right weakly regularity and the set of all two-sided
ideals. Indeed, it is proved that S is a fully prime right ordered semigroup
if and only if S is right weakly regular and the set of all two-sided ideals of
S is totally ordered (i.e., for any ideals A and B of S, A ⊆ B or B ⊆ A).

An ordered semigroup (S, .,6) consists of a semigroup (S, .) together
with an ordered relation ≤ on S which is compatible with the semigroup
operation (i.e., for any a, b, c ∈ S, a 6 b implies ca 6 cb and ac 6 bc). For
A,B ⊆ S, we write AB for {ab ∈ S | a ∈ A, b ∈ B} and write (A] for
{x ∈ S | ∃a ∈ A, x 6 a}, i.e.

AB = {ab ∈ S | a ∈ A, b ∈ B};

(A] = {x ∈ S | ∃a ∈ A, x 6 a}.

It is observed that

(1) A ⊆ (A];

(2) if A ⊆ B, then (A] ⊆ (B];

(3) ((A]] = (A];

(4) (A](B] ⊆ (AB];

(5) ((A](B]] = (AB];

(6) (A ∪B] = (A] ∪ (B];

(7) (A ∩B] ⊆ (A] ∩ (B].

A nonempty subset A of S is called a right ideal (of S) if

(1) ax ∈ A for any a ∈ A and x ∈ S (i.e., AS ⊆ A);
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(2) (A] = A (i.e., if a ∈ A and x ∈ S such that x 6 a, then x ∈ A).

A left ideal of S can be defined similarly: a nonempty subset A of S is
called a left ideal (of S) if

(1) xa ∈ A for any a ∈ A and x ∈ S (i.e., SA ⊆ A);

(2) (A] = A (i.e., if a ∈ A and x ∈ S such that x 6 a, then x ∈ A).

A nonempty subset A of S is called a two-sided ideal (it is abbreviated by
ideal) of S if it is both a left and a right ideal of S. An element 0 of S
is called a zero if 0a = a0 = 0 for all a ∈ S. An element 1 of S is called
an identity if a1 = 1a = a for all a ∈ S. If S has the identity, then the
principal right ideal of S generated by a is of the form (aS]; the principal
left ideal of S generated by a is of the form (Sa]; and the principal ideal of
S generated by a is of the form (SaS].

2. Main results

Hereafter, S is an ordered semigroup with zero 0 and identity 1. We begin
this section with the definition of prime right ideals of S.

Definition 2.1. Let P be a right ideal of S. Then P is called a prime right
ideal of S if for any right ideals A and B of S, AB ⊆ P implies A ⊆ P or
B ⊆ P .

Theorem 2.2. Let P be a right ideal of S. Then P is a prime right ideal
of S if and only if for any a, b ∈ S, aSb ⊆ P implies a ∈ P or b ∈ P .

Proof. Assume that P is a prime right ideal of S. Let a, b ∈ S be such that
aSb ⊆ P ; then

(aS](bS] ⊆ ((aS](bS]] = ((aS)(bS)] ⊆ (PS] ⊆ (P ] = P.

Since (aS] and (bS] are right ideals of S, (aS] ⊆ P or (bS] ⊆ P . Hence
a ∈ P or b ∈ P . Conversely, assume that for any a, b ∈ S, aSb ⊆ P implies
a ∈ P or b ∈ P . Let A and B be right ideals of S such that AB ⊆ P .
Suppose that A * P , i.e. there exists a ∈ A \ P . Let b ∈ B. Then

aSb ⊆ (aSb] ⊆ (ASB] ⊆ (AB] ⊆ (P ] = P.

By assumption, a ∈ P or b ∈ P . Thus b ∈ P . Therefore B ⊆ P and hence
P is a prime right ideal of S.
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Definition 2.3. Let M be a proper right ideal of S. Then M is said to be
maximal if there is no any proper right ideal of S containing M properly.

Theorem 2.4. If M is a maximal right ideal of S, then M is a prime right
ideal of S.

Proof. Let M be a maximal right ideal of S. To show that M is a prime
right ideal of S, let a, b ∈ S be such that aSb ⊆ M . Suppose that a /∈ M .
We have M ∪ (aS] is a right ideal of S. Since M is a maximal right ideal of
S and M ⊂ M ∪ (aS], M ∪ (aS] = S. Then 1 ∈ M or 1 ∈ (aS]. If 1 ∈ M ,
then b = 1b ∈M . If 1 ∈ (aS], let 1 6 as for some s ∈ S. Consider:

b = 1b 6 asb ∈ aSb ⊆M.

Therefore b ∈M and by Theorem 2.2, M is a prime right ideal of S.

Theorem 2.5. Let P be a prime right ideal of S. For a ∈ S \ P ,

(P : a) = {x ∈ S | ax ∈ P}

is a prime right ideal of S.

Proof. Clearly, 0 ∈ (P : a). If x ∈ (P : a) and s ∈ S, then ax ∈ P ; hence
a(xs) = (ax)s ∈ P . If x ∈ (P : a) and s ∈ S such that s 6 x, then
as 6 ax ∈ P ; hence as ∈ P (i.e., s ∈ (P : a)). Therefore (P : a) is a right
ideal of S. Let B and C be right ideals of S such that BC ⊆ (P : a); then
a(BC) ⊆ P . Consider:

(aB](aC] ⊆ ((aB](aC]] = ((aB)(aC)] ⊆ (aBC] ⊆ (P ] = P.

Then (aB] ⊆ P or (aC] ⊆ P . Hence B ⊆ (P : a) or C ⊆ (P : a). Hence
(P : a) is a prime right ideal of S.

Similarly, we have the following result:

Theorem 2.6. Let P be a prime right ideal of S. Then

{x ∈ S | Sx ⊆ P}

is the largest ideal of S contained in P .

Definition 2.7. Let P be a right ideal of S. Then P is said to be a
semiprime right ideal of S if for any right ideal A of S, AA ⊆ P implies
A ⊆ P .
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It is observed that every prime right ideal is a semiprime right ideal.

Theorem 2.8. Let P be a right ideal of S. Then P is a semiprime right
ideal of S if and only if for any a ∈ S, aSa ⊆ P implies a ∈ P .

Proof. Assume that P is semiprime right ideal of S. Let a ∈ S be such that
aSa ⊆ P ; then

(aS](aS] ⊆ ((aS](aS]] = ((aS)(aS)] ⊆ (PS] ⊆ (P ] = P.

Since (aS] is a right ideal of S, (aS] ⊆ P . Hence a ∈ P . Conversely, assume
that for any a ∈ S, aSa ⊆ P implies a ∈ P . Let A be a right ideal of S
such that AA ⊆ P . Let a ∈ A. Then

aSa ⊆ (aSa] ⊆ (ASA] ⊆ (AA] ⊆ (P ] = P.

By assumption, a ∈ P . Therefore A ⊆ P . Hence P is a semiprime right
ideal of S.

Definition 2.9. Let A be a right ideal of S. Then A is said to be irreducible
if for any right ideals B and C of S, B ∩ C = A implies B = A or C = A.

Definition 2.10. Let A be a right ideal of S. Then A is said to be strongly
irreducible if for any right ideals B and C of S, B ∩ C ⊆ A implies B ⊆ A
or C ⊆ A.

Theorem 2.11. Let A be a right ideal of S. If x /∈ A, then there exists an
irreducible right ideal of S containing A and not containing x.

Proof. Assume that x /∈ A. Clearly, the set of right ideals of S containing
A and not containing x is nonempty. Consider a set {Aα | α ∈ Λ} of a
chain of right ideals of S containing A and not containing x. Then ∪α∈ΛAα

is a right ideal of S containing A and not containing x. By Zorn’s lemma,
the set of right ideals of S containing A and not containing x contains a
maximal element, denoted by M . Let B and C be right ideals of S such
that B ∩ C = M . Suppose that M ⊂ B and M ⊂ C. Then x ∈ B and
x ∈ C. Since x /∈ M , x /∈ B or x /∈ C. This is a contradiction. Hence
M = B or M = C. Therefore M is irreducible

Theorem 2.12. Any proper right ideal A of S is the intersection of irre-
ducible right ideals of S containing A.
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Proof. Let A be a proper right ideal of S, {Aα | α ∈ Λ} the set of irreducible
right ideals of S containing A. Then A ⊆ ∩α∈ΛAα. If x /∈ A, then there
exists an irreducible right ideal Aα0 of S such that A ⊆ Aα0 and x /∈ Aα0 .
Then x /∈ ∩α∈ΛAα. Hence ∩α∈ΛAα ⊆ A. Thus A = ∩α∈ΛAα. Therefore A
is the intersection of irreducible right ideals of S containing A.

Theorem 2.13. Let P be a right ideal of S. If P is strongly irreducible
semiprime, then P is prime.

Proof. Assume that P is strongly irreducible semiprime. To show that P is
prime, let A and B be right ideals of S such that AB ⊆ P . We have

(A ∩B)(A ∩B) ⊆ AB ⊆ P.

Since A∩B is a right ideal of S and P is semiprime, A∩B ⊆ P . From P is
strongly irreducible, it follows that A ⊆ P or B ⊆ P . Hence P is prime.

Definition 2.14. An ordered semigroup S is called right weakly regular if
a ∈ (aSaS] for all a ∈ S.

Theorem 2.15. The following conditions are equivalent:

(1) S is right weakly regular;

(2) (AA] = A for any right ideal A of S;

(3) A ∩ I = (AI] for any right ideal A and ideal I of S.

Proof. Assume that S is right weakly regular. Let A be a right ideal of S.
Then (AA] ⊆ A. If a ∈ A, then

a ∈ (aSaS] ⊆ (ASAS] ⊆ (AA].

Then A ⊆ (AA]. Hence A = (AA]. Therefore (AA] = A for any right ideal
A of S. Conversely, assume that (AA] = A for any right ideal A of S. To
show that S is right weakly regular, let a ∈ S. Since (aS] is a right ideal of
S, ((aS](aS]] = (aS]. Thus

a ∈ (aS] = ((aS](aS]] = (aSaS].

Therefore S is right weakly regular. This proves that (1) is equivalent to
(2).
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To show that (2) is equivalent to (3) assume that (AA] = A for any
right ideal A of S. Let A be a right ideal and I an ideal of S. We have
(AI] ⊆ A ∩ I. From A ∩ I is a right ideal of S, it follows that

A ∩ I = ((A ∩ I)(A ∩ I)] ⊆ (AI].

Then A∩ I = (AI]. Hence A∩ I = (AI] for any right ideal A and ideal I of
S. Conversely, assume that A∩I = (AI] for any right ideal A and ideal I of
S. Let B be a right ideal of S. We have (SBS] is an ideal of S. Consider:

B = B ∩ (SBS] = (B(SBS]] ⊆ ((B](SBS]] = (BSBS] ⊆ (BB].

Hence (BB] = B. Therefore, (BB] = B for any right ideal B of S.

Theorem 2.16. S is right weakly regular if and only if every right ideal of
S is semiprime.

Proof. Assume that S is right weakly regular. Let P be a right ideal of
S. Let A be a right ideal of S such that AA ⊆ P . By assumption and
Theorem 2.15, A = (AA]. Thus A ⊆ P . Hence P is semiprime. Conversely,
assume that every right ideal of S is semiprime. To show that S is right
weakly regular, let B be a right ideal of S. Since (BB] is a right ideal
of S, (BB] is semiprime. From BB ⊆ (BB], it follows that B ⊆ (BB].
Since (BB] ⊆ B ⊆ (BB], (BB] = B. By Theorem 2.15, S is right weakly
regular.

Theorem 2.17. Let S be right weakly regular and P an ideal of S. Then
P is prime if and only if P is irreducible.

Proof. It is clear that if P is prime, then P is irreducible. Assume that P
is irreducible. Let A and B be ideals of S such that AB ⊆ P . By Theorem
2.15, A∩B ⊆ P . Then (A∩B)∪P = P . This means (A∪P )∩(B∪P ) = P .
By assumption, A∪P = P orB∪P = P . Hence A ⊆ P orB ⊆ P . Therefore
P is prime.

Definition 2.18. We call S a fully prime right ordered semigroup if all
right ideals of S are prime right ideals. For a fully semiprime right ordered
semigroup can be defined similarly.

Theorem 2.19. If S is a fully prime right ordered semigroup, then S is
right weakly regular and the set of ideals of S is totally ordered.
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Proof. If S is a fully prime right ordered semigroup, then all right ideals of
S are prime right ideals of S. Since every prime right ideal is semiprime
and Theorem 2.16, S is right weakly regular. Let A and B be ideals of S.
Then A ∩ B is a right ideal of S. By assumption, A ∩ B is prime. Since
AB ⊆ A ∩ B, A ⊆ A ∩ B or B ⊆ A ∩ B. This means A = A ∩ B or
B = A ∩ B. Therefore A ⊆ B or B ⊆ A. Hence S is right weakly regular
and the set of ideals of S is totally ordered.

Theorem 2.20. If S is right weakly regular and the set of ideals of S is
totally ordered, then S is a fully prime right ordered semigroup.

Proof. Assume that S is right weakly regular and the set of ideals of S is
totally ordered. It is to show that S is a fully prime right ordered semigroup.
Let P be a right ideal of S. To show that P is prime, let A and B be right
ideals of S such that AB ⊆ P . We have A ⊆ B or B ⊆ A; (AA] = A,
(BB] = B. If A ⊆ B, then

A = (AA] ⊆ (AB] ⊆ (P ] = P.

Similarly, for B ⊆ A, we have B ⊆ P . Hence P is prime. Therefore S is a
fully prime right ordered semigroup.

Now we give a characterization of a fully prime right ternary semiring fol-
lowed by Theorems 2.19 and Theorem 2.20.

Theorem 2.21. S is a fully prime right ordered semigroup if and only if S
is right weakly regular and the set of ideals of S is totally ordered.

We recalled that a subsemigroup B of S is called a bi-ideal of S if BSB ⊆ B
and (B] = B (i.e., if b ∈ B and x ∈ S such that x 6 b, then x ∈ B).

Theorem 2.22. S is right weakly regular if and only if B ∩ I ⊆ (BI] for
any bi-ideal B and ideal I of S.

Proof. Assume that S is right weakly regular. Let B be a bi-ideal and I an
ideal of S. Let x ∈ B ∩ I. By assumption, x ∈ (xSxS]. Then

x ∈ (xSxS] ⊆ (xS(xSxS]S] ⊆ (xSxSxSS] ⊆ (BSBSISS] ⊆ (BI].

Hence B ∩ I ⊆ (BI]. Conversely, assume that B ∩ I ⊆ (BI] for any bi-ideal
B and an ideal I of S. Let A be a right ideal of S. It is observed that A is
a bi-ideal of S. Using assumption, we have

A = A ∩ (SAS] ⊆ (A(SAS]] = (ASAS] ⊆ (AA] ⊆ A.

Thus A = (AA]. By Theorem 2.15, S is right weakly regular.
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Theorem 2.23. S is right weakly regular if and only if B ∩ I ∩A ⊆ (BIA]
for any bi-ideal B, right ideal A and ideal I of S.

Proof. Assume that S is right weakly regular. Let B be a bi-ideal, A a right
ideal and I an ideal of S. Let x ∈ B ∩ I ∩ A. By assumption, x ∈ (xSxS].
Then

x ∈ (xSxS] = (xS(xSxS]S] ⊆ (xSxSxSS] ⊆ (B(SIS)(ASS)] ⊆ (BIA].

Hence B ∩ I ∩A ⊆ (BIA]. Conversely, assume that B ∩ I ∩A ⊆ (BIA] for
any bi-ideal B, right ideal A and ideal I of S. Let A be a right ideal of S.
From A is a bi-ideal of S and assumption, we have

A = A ∩ S ∩A ⊆ (ASA] ⊆ (AA] ⊆ (A] = A.

Thus A = (AA]. By Theorem 2.15, S is right weakly regular.
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On idempotent ordered semigroups

Susmita Mallick and Kalyan Hansda

Abstract. An element e of an ordered semigroup (S, ·,6) is called an ordered idempotent
if e 6 e2. We call an ordered semigroup S idempotent ordered semigroup if every element
of S is an ordered idempotent. Every idempotent semigroup is a complete semilattice of
rectangular idempotent semigroups and in this way we arrive to many other important
classes of idempotent ordered semigroups.

1. Introduction

Idempotents play an important role in different major subclasses of the
regular semigroups S. A regular semigroup S is called orthodox if the set of
all idempotents E(S) forms a subsemigroup, and S is a band if S = E(S).

T. Saito studied systematically the influence of order on idempotent
semigroup [4]. In [1], Bhuniya and Hansda introduced the notion of ordered
idempotents and studied different classes of regular ordered semigroups,
such as, completely regular, Clifford and left Clifford ordered semigroups
by their ordered idempotents. If T is a subsemigroup of S, then the set of
ordered regular elements of T is denoted by Reg6(T ) [2]. If T =< E6(S) >
then Reg6(T ) = T = Reg6(S) ∩ T , in general. In [2], Hansda proved
several equivalent conditions so that Reg6(T ) = T = Reg6(S) ∩ T for
T = (Se], (eS] and (eSf ], where e, f are ordered idempotents. The purpose
of this paper to study ordered semigroups in which every element is an or-
dered idempotent. Complete semilattice decomposition of these semigroups
automatically suggests the looks of rectangular idempotent semigroups and
in this way we arrive to many other important classes of idempotent ordered
semigroups.

2010 Mathematics Subject Classification: 20M10, 06F05.
Keywords: ordered idempotent; idempotent ordered semigroup; rectangular idempo-
tent ordered semigroup normal idempotent ordered semigroup.
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2. Preliminaries

An ordered semigroup is a partially ordered set (S,6), and at the same
time a semigroup (S, ·) such that for all a, b, c ∈ S; a 6 b implies that
ca 6 cb and ac 6 bc. It is denoted by (S, ·,6). Throughout this article,
unless stated otherwise, S stands for an ordered semigroup. For every subset
H ⊆ S, denote (H] = {t ∈ S : t 6 h, for some h ∈ H}. Kehayopulu [3]
defined Green’s relations on a regular ordered semigroup S as follows:

aLb if (S1a] = (S1b], aRb if (aS1] = (bS1],

aJ b if (S1aS1] = (S1bS1], and H = L ∩ R.

These four relations L, R, J and H are equivalence relations.
An equivalence relation ρ on S is called left (right) congruence if for every

a, b, c ∈ S; aρb implies caρcb (acρbc). By a congruence we mean both left
and right congruence. A congruence ρ is called a semilattice congruence on
S if for all a, b ∈ S, aρa2 and abρba. By a complete semilattice congruence
we mean a semilattice congruence σ on S such that for a, b ∈ S, a 6 b
implies that aσab. An element e of an ordered semigroup (S, ·,6) is called
an ordered idempotent [1] if e 6 e2. An ordered semigroup S is called
H−commutative if for every a, b ∈ S, ab ∈ (bSa].

If F is a semigroup, then the set Pf (F ) of all finite subsets of F is
a semilattice ordered semigroup with respect to the product · and partial
order relation 6 given by: for A,B ∈ Pf (F ),

A ·B = {ab | a ∈ A, b ∈ B} and A 6 B if and only if A ⊆ B.

3. Idempotent ordered semigroups

In this section we characterize ordered semigroups of which every element
is an ordered idempotent. We show that these ordered semigroups are
analogous to bands.

We first make a natural analogy between band and idempotent ordered
semigroup.

Theorem 3.1. Let B be a semigroup. Then Pf (B) is idempotent ordered
semigroup if and only if B is a band.

Proof. Let B be a band and U ∈ Pf (B). Choose x ∈ U . Then x2 ∈ U2

implies x ∈ U2. Then U ⊆ U2. So Pf (B) is idempotent ordered semigroup.
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Conversely, assume that B be a semigroup such that Pf (B) is an idem-
potent ordered semigroup. Take y ∈ B. Then Y = {y} ∈ Pf (B). Thus
Y ⊆ Y 2, which implies y = y2. Hence B is a band.

Proposition 3.2. Let B be a band, S be an idempotent ordered semigroup
and f : B −→ S be a semigroup homomorphism. Then there is an ordered
semigroup homomorphism φ : Pf (B) −→ S such that the following diagram
is commutative:

B S

Pf (B)

f

l
φ

where l : B −→ Pf (B) is given by l(x) = {x}.

Proof. Define φ : Pf (F ) −→ S by: for A ∈ Pf (F ), φ(A) = ∨a∈Af(a). Then
for every A,B ∈ Pf (F ), φ(AB) = ∨a∈A,b∈Bf(ab) = ∨a∈A,b∈Bf(a)f(b) =
(∨a∈Af(a))(∨b∈Bf(b)) = φ(A)φ(B), and ifA 6 B, then φ(A) = ∨a∈Af(a) 6
∨b∈Bf(b) = φ(B) shows that φ is an ordered semigroup homomorphism.
Also φ ◦ l = f .

Lemma 3.3. In an idempotent ordered semigroup S, am 6 an for every
a ∈ S and m,n ∈ N with m 6 n.

Every idempotent ordered semigroup S is completely regular and hence
J is the least complete semilattice congruence on S, by [Lemma 4.13, [1]]. In
an idempotent ordered semigroup S, the Green’s relation J can equivalently
be expressed as: for a, b ∈ S,

aJ b if there are x, y, u, v ∈ S such that a 6 axbya and b 6 buavb.

Now we characterize the J−class in an idempotent ordered semigroup.

Definition 3.4. An idempotent ordered semigroup S is called rectangular
if for all a, b ∈ S, there are x, y ∈ S such that a 6 axbya.

Example 3.5. (N, ·,6) is a rectangular idempotent ordered semigroup,
whereas if we define a o b = min{a, b} for all a, b ∈ N then (N, ◦,6) is an
idempotent ordered semigroup but not rectangular.
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Also we have the following equivalent conditions.

Lemma 3.6. Let S be an idempotent ordered semigroup. Then the following
conditions are equivalent:

1. S is rectangular;
2. for all a, b ∈ S, there is x ∈ S such that a 6 axbxa;
3. for all a, b, c ∈ S there is x ∈ S such that ac 6 axbxc.

Proof. (1) ⇒ (3): Let a, b, c ∈ S. Then there are x, y ∈ S such that a 6
axbya. This implies ac 6 axbyac 6 ax(bya)(bya)c 6(axbyab)(axbyab)yac 6
a(axbyabya)b(axbyabya)c 6 atbtc, where t = axbyabya ∈ S.

(3) ⇒ (2): Let a, b ∈ S. Then there is x ∈ S such that a2 6 axbxa.
Then a 6 a2 implies that a 6 axbxa.

(2)⇒ (1): This follows directly.

As we can expect, we show that the equivalence classes in an idempotent
ordered semigroup S determined by J are rectangular.

Theorem 3.7. Every idempotent ordered semigroup is a complete semilat-
tice of rectangular idempotent ordered semigroups.

Proof. Let S be an idempotent ordered semigroup. Then J is the least
complete semilattice congruence on S. Now consider a J -class (c)J for
some c ∈ S. Since J is a complete semilattice congruence, (c)J is a
subsemigroup of S. Let a, b ∈ (c)J . Then there is x ∈ S such that
a 6 axbxa, which implies that a 6 a(axb)b(bxa)a, that is, a 6 aubva
where u = axb and v = bxa. Also the completeness of J implies that
(a)J = (a2xbxa)J = (axb)J = (bxa)J , and u, v ∈ (c)J . Thus (c)J is a
rectangular idempotent ordered semigroup.

Definition 3.8. An idempotent ordered semigroup S is called left (right)
zero if for every a, b ∈ S, there exists x ∈ S such that a 6 axb (a 6 bxa).

Proposition 3.9. An idempotent ordered semigroup is left zero if and only
if it is left simple.

Proof. First suppose that S is a left zero idempotent ordered semigroup and
a ∈ S. Then for any b ∈ S, there is x ∈ S such that b 6 bxa, which shows
that b ∈ (Sa]. Thus S = (Sa] and hence S is left simple.

Conversely, assume that S is left simple. So for every a, b ∈ S, there is
s ∈ S such that a 6 sb. Then a 6 a2 gives that a2 6 asb. Thus S is a left
zero idempotent ordered semigroup.
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Lemma 3.10. In an idempotent ordered semigroup S, the following condi-
tions are equivalent:

1. For all a, b ∈ S, there is x ∈ S such that ab 6 abxba.
2. For all a, b ∈ S, there is x ∈ S such that ab 6 axbxa.
3 For all a, b ∈ S, there is x, y ∈ S such that ab 6 axbya.

Proof. (1)⇒ (3): This follows directly.
(3)⇒ (2): This is similar to the Lemma 3.6.
(2) ⇒ (1): Let a, b ∈ S. Then there is x ∈ S such that bab 6 baxbxba.

Now since ab 6 ababab, we have ab 6 ab(abaxbx)ba.

Definition 3.11. An idempotent ordered semigroup S is called left regular
if for every a, b ∈ S there is x ∈ S such that ab 6 axbxa.

Theorem 3.12. An idempotent ordered semigroup S is left regular if and
only if L = J is the least complete semilattice congruence on S.

Proof. First we assume that S is left regular. Let a, b ∈ S be such that
aJ b. Then there are u, v, x, y ∈ S such that a 6 ubv and b 6 xay. Since
S is left regular, there are s, t ∈ S such that bv 6 bsvsb and ay 6 atyta.
Then a 6 ubsvsb and b 6 xatyta; which shows that aLb. Thus J ⊆ L.
Again L ⊆ J on every ordered semigroup and hence L = J . Since every
idempotent ordered semigroup is completely regular, it follows that L is the
least complete semilattice congruence on S, by [Theorem 5.10, [1]]

Conversely, let L is the least complete semilattice congruence on S.
Consider a, b ∈ S. Then abLba implies that ab 6 xba for some x ∈ S. This
implies that

ab 6 abab 6 abxba.

Thus S is a left regular idempotent ordered semigroup, by Lemma 3.10.

Theorem 3.13. Let S be an idempotent ordered semigroup. Then the fol-
lowing conditions are equivalent:

1. S is left regular;
2. S is a complete semilattice of left zero idempotent ordered semigroups;
3. S is a semilattice of left zero idempotent ordered semigroups.

Proof. (1) ⇒ (2): In view of Theorem 3.12, it is sufficient to show that
each L-class is a left zero idempotent ordered semigroup. Let L be an L-
class and a, b ∈ L. Then L is a subsemigroup, since L is a semilattice
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congruence. Since aLb there is x ∈ S such that a 6 xb. This implies that
a 6 a3 6 a2xb 6 a2xb2 6 aub, where u = axb.

By the completeness of L, a 6 xb implies that (a)L = (axb)L, and hence
u ∈ L. Thus S is left zero idempotent ordered semigroup.

(2)⇒ (3): This implication is trivial.
(3) ⇒ (1): Let ρ be a semilattice congruence on S such that each ρ-

class is a left zero idempotent ordered semigroup. Consider a, b ∈ S. Then
ab, ba ∈ (ab)ρ shows that there is s ∈ (ab)ρ such that ab 6 absba 6
absbsba 6 a(bsb)b(bsb)a. Hence S is left regular.

Lemma 3.14. Let S be an idempotent ordered semigroup. Then the fol-
lowing conditions are equivalent:

1. S is H-commutative;

2. for all a, b ∈ S, ab ∈ (baS] ∩ (Sba];

3. S is a complete semilattice of t-simple idempotent ordered semigroups;

4. S is a semilattice of t-simple idempotent ordered semigroups.

Proof. (1)⇒ (2): Consider a, b ∈ S. Since S is H− commutative, there is
u ∈ S such that ab 6 bua. Also for u, a ∈ S, ua 6 asu for some s ∈ S.
Thus ab 6 basu, which shows that ab ∈ (baS]. Similarly ab ∈ (Sba]. Hence
ab ∈ (baS] ∩ (Sba].

(2) ⇒ (3): Suppose that J be an J -class in S and a, b ∈ J . Since
J is rectangular there is x ∈ J such that a 6 axbxa. Also by the given
condition (2) there is u ∈ J such that bxa 6 xaub. So a 6 ax2aub 6 vb,
where v = ax2au. Since J is a complete semilattice congruence on S,
(a)J = (a2x2aub)J = (ax2au)J = (v)J . So v ∈ J . This shows that J is
left simple. Similarly it can be shown that J is also right simple. Thus S is
a complete semilattice of t-simple idempotent ordered semigroups.

(3)⇒ (4): This follows trivially.
(4) ⇒ (1): Let S be the semilattice Y of t-simple idempotent ordered

semigroups {Sα}α∈Y and ρ be the corresponding semilattice congruence
on S. Then there are α, β ∈ Y such that a ∈ Sα and b ∈ Sβ . Then
ba, ab ∈ Sαβ . Since Sαβ is t-simple, ab 6 xba for some x ∈ Sαβ . Now for
x, ba ∈ Sαβ there is y ∈ Sαβ such that x 6 bay. This finally gives ab 6 bta,
where t = ayb.

Definition 3.15. An idempotent ordered semigroup (S, .,6) is called weakly
commutative if for any a, b ∈ S there exists u ∈ S such that ab 6 bua.
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Theorem 3.16. For an idempotent ordered semigroup S, the followings are
equivalent:

1. S is weakly commutative;
2. for any a, b ∈ S, ab ∈ (baS] ∩ (sba];

3. S is complete semilattice of left and right simple idempotent ordered
semigroups.

Proof. (1) ⇒ (2): Let a, b ∈ S. Then there exists u ∈ S such that ab 6
bua, also for u, a ∈ S, there exists z ∈ S such that ua 6 azu. Thus
ab 6 bua 6 baza for za ∈ S. So ab 6 (baS]. Similarly ab ∈ (Sba]. Hence
ab ∈ (baS] ∩ (sba].

(2) ⇒ (3): Since S is an idempotent ordered semigroup, by Theorem
3.7 we have ρ is a complete semilattice congruence. We now have to show
that, for each z ∈ S, J = (z)ρ is left and right simple. For this let us choose
a, b ∈ J . Then there exists x, y ∈ S such that a 6 axbya. So from the given
condition bya ∈ (syab] and therefore there is s1 ∈ S such that bya 6 s1yab.
Therefore a 6 axs1yab. Now since ρ is complete semilattice congruence on
S, we have (a)ρ = (a2xs1yab)ρ = (axs1yab)ρ = (axs1ya)ρ. Thus a 6 ub,
where u = axs1ya ∈ J . Hence J is left simple and similarly it is right
simple.

(3) ⇒ (1): Let S is complete semilattice Y of left and right simple
idempotent ordered semigroups {Sα}α∈Y . Thus S = {Sα}α∈Y . Take a, b ∈
S. Then there are α, β ∈ Y such that a ∈ Sα and b ∈ Sβ . Thus ab ∈ Sαβ . So
ab, ba 6 Sαβ . Then there are u, v ∈ Sαβ such that ab 6 uba and ab 6 bav
implies ab 6 ab2 6 bta, where t = avub. Hence S is weakly commutative.
This completes the proof.

Definition 3.17. An idempotent ordered semigroup (S, ·,6) is called nor-
mal if for any a, b, c ∈ S, there exists x ∈ S such that abca 6 acxba.

Theorem 3.18. For an idempotent ordered semigroup S, the followings are
equivalent:

1. S is normal;
2. aSb is weakly commutative, for any a, b ∈ S;
3. aSa is weakly commutative, for any a ∈ S.

Proof. (1) ⇒ (2): Consider axb, ayb ∈ aSb for x, y ∈ S. As S is normal,
∃u, v ∈ S such that (axb)(ayb) 6 (axb)(ayb)(axb)(ayb) 6 aybuxba2xbayb,
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for xba,yb∈S6(ayb)uxb(bay)v(a2x)b, for a2x,bay∈S6(ayb)(uxb2ayva)(axb).
This implies (axb)(ayb)6(ayb)t(axb)6(ayb)(ayb)t(axb)(axb), t = uxb2ayva
and thus (axb)(ayb) 6 aybsaxb, where s = aybtaxb ∈ aSb. Thus aSb is
weakly commutative.

(2)⇒ (3): This is obvious by taking b = a.
(3) ⇒ (1): Let a, b, c ∈ S. Then abca, aca ∈ aSa. Since aSa is weakly

commutative. Then there is s ∈ aSa such that (abca)aca 6 acasaabca. Now
for aba, abca ∈ aSa, there is t ∈ aSa such that abaabca 6 abcataba. Thus
abca 6 (abca)(abca) 6 abca2ca2bca 6 abca2ca2ba2bca = (abcaaca)(abaabca)
6 (acasa2ca)(abcataba) 6 acuba; where u = asa2bca2bcata ∈ S. Hence S
is normal.

Definition 3.19. An idempotent ordered semigroup (S, ·,6) is called left
normal (right normal) if for any a, b, c ∈ S, there exists x ∈ S such that
abc 6 acxb (abc 6 bxac).

Theorem 3.20. Let S be a left normal idempotent ordered semigroup, then

1. L is the least complete semilattice congruence on S;

2. S is a complete semilattice of LZ-idempotent ordered semigroups.

Proof. (1): Let a, b ∈ S such that aρb. Then there are x, y, u, v ∈ S such
that

a 6 a(xbya), b 6 b(uavb). (1)

Since S is left normal, we have for x, b, ya ∈ S, xbya 6 xyatb for some
t ∈ S. Similarly there is s ∈ S such that uavb 6 uvbsa. So from (1),
a 6 (axyat)b and b 6 (buvbs)a. Hence aLb. Thus ρ ⊆ L.

Again, let a, b ∈ S such that aLb. Thus there are u, v ∈ S such that
a 6 ub and b 6 va. Also we have a 6 a3 = aaa 6 auba 6 aubba for some
u, b ∈ S. Therefore aρb. Thus L ⊆ ρ. Thus L = ρ.

(2): Here we are only to proof that each L-class is a left zero. For this
let L-class (x)L = L, (say) for some x ∈ S. Clearly (x)L is a subsemigroup
of S. Take a, b ∈ L. Then y, z ∈ S such that a 6 yb, b 6 za. Since S is
left normal, there is t ∈ S such that a 6 yb 6 (yb)b 6 yzab.

This implies a 6 a2 6 a(ayzb)b. Thus (a)L = (a2yzb)L = (ayzb)L.
Therefore L is left zero. Hence S is a complete semilattice of left zero
idempotent ordered semigroups.
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Theorem 3.21. Let S be a idempotent ordered semigroup, then S is normal
if and only if L is right normal band congruence and R is left normal band
congruence.

Proof. First we shall see that L is left congruence on S. For this let us take
a, b ∈ S such that aLb and c ∈ S. Then there is x, y ∈ S such that a 6
xb, b 6 ya. Now as S is normal idempotent ordered semigroup, ca 6 cxb 6
cxbcxb 6 cxbx(s1)cb for some s1 ∈ S. Thus a6s2cb, where s2 = cxbxs1 ∈ S.
Again cb 6 s4ca where s4 = cyays3 ∈ S. So caLcb. It finally shows that L
is congruence on S. Similarly it can be shown that R is congruence on S.

Next consider that a, b, c ∈ S are arbitrary. Then since S is a normal
idempotent ordered semigroup, abc 6 abcabc 6 abcbt1ac 6 acb(t1t2bac) for
some acbt1t2 ∈ S. Also bac 6 bacbac 6 bacat3bc 6 (bct3t4abc) for some
bct3t4 ∈ S. So abcLbac. Similarly abcRacb. This two relations respectively
shows that L is right normal band congruence and R is left normal band
congruence.

Conversely, suppose that L is a right normal band congruence and
R is a left normal band congruence. Consider a, b, and c ∈ S. Then
abcRacb and bcaLcba. Then ∃x1, x2 ∈ S such that

abc 6 (acb)x1 and bca 6 x2cba.

Now then abc 6 (abc)bca 6 (acb)x1bca 6 ac(bx1x2c)ba for some bx1x2c ∈ S.
Hence S is an idempotent ordered semigroup.
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Probabilistic groupoids

Smile Markovski and Lidija Goračinova-Ilieva

Abstract. Algebraic structures are commonly used as a tool in treatments of various
processes. But their exactness reduces the opportunity of their application in nonde-
terministic environment. On the other hand, probability theory and fuzzy logic do not
provide convenient means for expressing the result of combining elements in order to
produce new ones. Moreover, these theories are not developed to “measure" algebraic
properties. Therefore, we propose a new concept which relies both on universal algebra
and probability theory.

We introduce probabilistic mappings, and by them we define the notion of a proba-
bilistic algebra. Let A and B be non-empty sets, and let DB be the set of all probability
distributions on B. A probabilistic mapping from A to B is a mapping h : A → DB . Let
A be a set, n ∈ N, and let An = {(a1, a2, . . . , an)| ai ∈ A, i = 1, 2, . . . , n} be the n-th
power of A. Every probabilistic mapping from An to A is a probabilistic (n-ary) opera-
tion on A. A pair (A,F ) of a set A and a family F of probabilistic operations on A is
called a probabilistic algebra. When F = {f } has one binary operation, then the proba-
bilistic algebra (A, f) is a probabilistic groupoid. “Ordinary" groupoids are just a special
type of probabilistic ones. Basic properties of probabilistic groupoids and some classes
of probabilistic groupoids (with units, commutative, associative, idempotent, with can-
cellation, with inverses, quasigroups, groups) are treated in this paper. Here we consider
only the finite case.

1. Probabilistic mappings

Let A and B be non-empty finite sets, and denote by DB the set of all
probability distributions on B, that is

DB = {f | f : B → R, f(b) > 0 for b ∈ B,
∑
b∈B

f(b) = 1}.

2010 Mathematics Subject Classification: 00A05, 08A99, 60B99
Keywords: probabilistic mapping; probabilistic groupoid; probabilistic group; proba-
bilistic semigroup; probabilistic quasigroup; idempotent, cancellative, inversible pro-
babilistic groupoid.
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WhenB = {b1, b2, . . . , bn} is a finite set, a probability distribution f :B → R
can be also denoted, as usual, by the set of images {f(b1), f(b2), . . . , f(bn)}.

For every mapping h from A to DB we say that it is a probabilistic
mapping from A to B. We denote such a mapping by h : A# B. If h(a) = f
for some a ∈ A, then we write f = ha, and when ha(b) = p, p ∈ [0, 1], we
say that the probability of mapping the element a ∈ A into b ∈ B is p,
or that b is an image of a with probability p. The element a is called a
pre-image of b with probability p = ha(b). Given a fixed element b ∈ B,
each element of A is a pre-image of b with some probability, but the set
h−1{b} = {ha(b)| a ∈ A} is not necessarily a probability distribution on A.

Example 1.1. A = {1, 2, 3}, B = {a, b, c, d}, h : A# B:

h1 =

(
a b c d

0.3 0 0.7 0

)
, h2 =

(
a b c d
0 0 0 1

)
, h3 =

(
a b c d

0.2 0 0.2 0.6

)
.

In order to get the sets {ha(b)| a ∈ A}, for every b ∈ B, to be probability
distributions on A a necessary, but not sufficient, condition is to have the
equality |A| = |B|. An example is given below.

Example 1.2. A = {1, 2, 3}, B = {a, b, c}, s, h : A# B:

s1 =

(
a b c

0.2 0.5 0.3

)
, s2 =

(
a b c

0.6 0.4 0

)
, s3 =

(
a b c

0.2 0.1 0.7

)
;

h1 =

(
a b c

0.2 0.5 0.3

)
, h2 =

(
a b c

0.2 0.5 0.3

)
, h3 =

(
a b c

0.2 0.1 0.7

)
.

The sets s−1{a} = {0.2, 0.6, 0.2}, s−1{b} = {0.5, 0.4, 0.1}, s−1{c} =
{0.3, 0, 0.7} are probability distributions on A, while the set h−1{a} =
{0.2, 0.2, 0.2} is not.

Note that every probabilistic mapping from A to B is actually a family
of distributions on B indexed by the elements of A. In spite of the fact
that this is a familiar notion (discrete stochastic process), the main idea
is to consider some algebraic properties which are satisfied with certain
“probability". Therefore, we start with this concept and appropriate new
terminology.
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2. Representations of probabilistic mappings

Besides using the usual representations of mappings, in the case when the
sets are finite (and not having many elements), weighted digraphs, stochas-
tic matrices and tables are particularly convenient for expressing proba-
bilistic mappings. In what follows, we give the graph, matrix and table
representation of the probability mapping from Example 1.

3•

2•

1•

•d

•c

•b

•a

���
���

���
��:

XXXXXXXXXXXzXXXXXXXXXXXz-���
���

���
��:

�
�
�
�
�
�
�
�
�
�
�>0.3

0.7

1.0

0.2

0.2

0.6

Π =

0.3 0 0.7 0
0 0 0 1

0.2 0 0.2 0.6



h h1 h2 h3
a 0.3 0 0.2
b 0 0 0
c 0.7 0 0.2
d 0 1 0.6

3. Compositions of probabilistic mappings

Let f : A # B and g : B # C be probabilistic mappings. Define composi-
tion of f and g to be the mapping h = g • f which maps every element a of
A into a real-valued function ha on C, determined by the rule

ha(c) =
∑
b∈B

fa(b)gb(c),

for every c ∈ C.

Theorem 3.1. A composition of probabilistic mappings is a probabilistic
mapping.

Proof. Let f : A# B and g : B # C be probabilistic mappings, and h be
the composition of f and g. Then for the image ha of an arbitrary element
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a of A, we obtain∑
c∈C

ha(c) =
∑
c∈C

∑
b∈B

fa(b)gb(c) =
∑
b∈B

(
fa(b)

∑
c∈C

gb(c)
)

=
∑
b∈B

fa(b) · 1 = 1.

Clearly ha(c) > 0 for each c ∈ C, hence for every a ∈ A, ha is a probability
distribution on C, so h is a probabilistic mapping, h : A# C.

By the definition of the notion composition of probabilistic mappings
and the matrix representation, we get the following result.

Theorem 3.2. Let A, B and C be finite sets, f : A # B and g : B # C.
If Π1 and Π2 are the corresponding matrices of f and g, respectively, then
their product Π1 ·Π2 is the matrix representation of the composition g • f .

Example 3.3. A = {1, 2, 3}, B = {a, b, c, d}, C = {u, v} :

Π1(A# B) =

0.3 0 0 0.7
0 0 0 1

0.2 0.1 0.4 0.3

 , Π2(B # C) =


0.8 0.2
1 0
0 1

0.6 0.4

 ,

Π1 ·Π2(A# C) =

0.66 0.34
0.6 0.4
0.44 0.56

 .

Theorem 3.4. Let f : A # B, g : B # C and h : C # D. Then
h • (g • f) = (h • g) • f .

Proof. Let a ∈ A. For each x ∈ D we have

(h • (g • f))a(x) =
∑
c∈C

(g • f)a(c)hc(x) =
∑
c∈C

(∑
b∈B

fa(b)gb(c)
)
hc(x)

=
∑
b∈B

∑
c∈C

fa(b)gb(c)hc(x) =
∑
b∈B

fa(b)
(∑
c∈C

gb(c)hc(x)
)

=
∑
b∈B

fa(b)(h • g)b(x) = ((h • g) • f)a(x).
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4. Definition of probabilistic groupoids

Let A 6= ∅ and N = {1, 2, . . . } be the set of natural numbers. Then, for
n ∈ N, the nth direct power of A is the set of ordered n-tuples An =
{(a1, a2, . . . , an)|ai ∈ A, i = 1, 2, . . . , n}. We take by definition A0 = {∅}.

Every probabilistic mapping f : An # A, n ∈ N ∪ {0}, is said to be an
n-ary probabilistic operation on A. The pair (A,F) of a nonempty set A and
a family F of probabilistic operations on A is called a probabilistic algebra.
In the case when F consists of only one binary probabilistic operation g :
A×A# A, we say that the probabilistic algebra is a probabilistic groupoid,
denoted by (A, g), or just by A when g is known. We also use the notation
ga,b for the probability distribution g(a, b). If ga,b(c) = p, then we say that
the probability the product of a and b to be c is p.

The class of all “ordinary" groupoids can be considered as a subclass of
the class of probabilistic groupoids. Namely, for a ∈ A, let εa ∈ DA be the
probability distribution which is determined by

εa(x) =

{
1 : x = a,
0 : x 6= a.

Denote by D0 the subset of DA which consists of such functions, that is
D0 = {εa ∈ DA| a ∈ A}. Then an “ordinary" groupoid is the pair (A, g),
where g : A×A# D0, under the identification εc ≡ c.

For A = {a} we have that g : A × A → D{a} is just ga,a = εa, so the
probabilistic groupoid ({a}, g) is in fact the (ordinary) trivial groupoid.

If B ⊆ A, we denote by extDB the subset of DA determined by:

f ∈ extDB ⇔ f(x) = 0 for every x ∈ A \B.

In the sequel we identify the distribution extDB on the set A and the
distribution DB on the set B. Clearly,

B1 ⊆ B2 ⊆ A⇒ DB1 ⊆ DB2 ⊆ DA.

Unlike in the case of ordinary groupoids, for finite |A| > 1, there are
infinitely many probabilistic groupoids. For instance, when A = {a, b}, one
is given by

g a b

a ga,a ga,b
b gb,a gb,b

, where
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ga,a =

(
a b

0.6 0.4

)
, gb,a =

(
a b
1 0

)
= εa,

ga,b =

(
a b

0.9 0.1

)
, gb,b =

(
a b
0 1

)
= εb.

This probabilistic groupoid can be presented in more convenient way by
using only one table, as follows:

g ga,a ga,b gb,a gb,b
a 0.6 0.9 1 0
b 0.4 0.1 0 1

.

Finite probabilistic groupoids can be represented by “cubes” whose ele-
ments belong to [0, 1] and the sum of the elements along the vertical axes
are equal to 1. The previous groupoid can be presented as follows.

0.9•

0.6• • 1

• 0
6

6
6

6

0.1•

0.4• • 0

• 1

!!!!!!!
!!!!!!

e
e

e

e
e

e

!!!!!!
!!!!!!

e
e

e

e
e

e

level a

level b

ga,a gb,a

ga,b

gb,b

5. Probabilistic subgroupoids

Let (A, gA) and (B, gB) be probabilistic groupoids, and B ⊆ A. If for every
a, b ∈ B we have that gBa,b = gAa,b|B (gAa,b|B is the restriction of gAa,b on B,
i.e., gBa,b ∈ extDB), then we say that (B, gB) is a probabilistic subgroupoid
of (A, gA).

Let (A, g) be a probabilistic groupoid and B ⊆ A. Then B is said to be
a closed subset of A if ga,b(c) 6= 0 implies c ∈ B, for every a, b ∈ B.

Theorem 5.1. Let (A, g) be a probabilistic groupoid and B ⊆ A. Then B
is a probabilistic subgroupoid of A if and only if B is a closed subset of A.
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Proof. Let B be a probabilistic subgroupoid of A, and a, b ∈ B be arbitrary.
Assume that there is c ∈ A\B, such that ga,b(c) = p > 0. Then

1 =
∑
x∈A

ga,b(x) =
∑

x∈A\B

ga,b(x) +
∑
x∈B

ga,b(x) > p+
∑
x∈B

ga,b(x) = p+ 1 > 1,

a contradiction.
If B is a closed subset of A then, for every a, b ∈ B, we have that∑

x∈B
ga,b(x) = 1,

since ∑
x∈A

ga,b(x) = 1 and x /∈ B implies ga,b(x) = 0.

Hence, B is a probabilistic subgroupoid of A.

6. Some classes of probabilistic groupoids

sectionSome classes of probabilistic groupoids Here we define several classes
of probabilistic groupoids, corresponding to some classes of ordinary groupoids.

6.1 Probabilistic groupoids with units

Let (A, g) be a probabilistic grou-poid. An element l ∈ A (r ∈ A) is said to
be a left (right) unit if

(∀x ∈ A) gl,x = εx

(
(∀x ∈ A) gx,r = εx

)
,

that is, the probability of the product of l and x to be x is 1 (the probability
of the product of x and r to be x is 1), for every element x ∈ A. (Note that
this implies gl,x(y) = 0 (gx,r(y) = 0), for each y 6= x.)

Let a ∈ A be an arbitrary element, and consider the set

La = {ga,x(x)| x ∈ A}
(
Ra = {gx,a(x)| x ∈ A}

)
.

Let paL = inf La (pa
R = inf Ra). Then paL (pa

R) is called the probability
of the left (right) neutrality of a. The following property is obvious.

Proposition 6.1. An element l is a left unit (a right unit) if and only if
the probability of its left neutrality (right neutrality) is one.
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Proposition 6.2. Let (A, g) be a probabilistic groupoid and let a ∈ A.
Then the probability pbR (pb

L) of the right neutrality (left neutrality) of an
arbitrary element b ∈ A, b 6= a, does not exceed 1− paL (1− paR). Proof.
Let a ∈ A be fixed element and let b 6= a ∈ A be arbitrary element.Then we
have:

pb
R = inf{gx,b(x)|x ∈ A} 6 ga,b(a) = 1−

∑
x∈A
x 6=a

ga,b(x)

6 1− ga,b(b) 6 1− inf{ga,x(x)|x ∈ A} = 1− paL.

As a consequence of Proposition 6.2, we obtain the following statement.

Corollary 6.3. Let l (r) be a left unit (a right unit) of a probabilistic
groupoid (A, g). Then the probability of the right neutrality (left neutrality)
of any other element of A is 0.

It is clear that a probabilistic groupoid does not have to possess a left
unit, but if it has one, then it does not need to be a unique one; the same
holds for the right units. However, like in the case of ordinary groupoids, a
probabilistic groupoid can not have distinct left and right units.

Theorem 6.4. Let (A, g) be a probabilistic groupoid and let l be its left unit
and let r be its right unit. Then l = r.

Proof. Assume that l 6= r. Since l is a left unit, we have that gl,r(r) =
εr(r) = 1, and since r is a right unit, gl,r(l) = εl(l) = 1 also holds. But then

1 =
∑
x∈A

gl,r(x) > gl,r(r) + gl,r(l) = 2,

a contradiction.

An element e ∈ A which is both left and right unit is said to be a unit
of a probabilistic groupoid (A, g).

Having in mind the Corollary 6.3, we have the following property.

Corollary 6.5. Let e be the unit of a probabilistic groupoid (A, g). Then
the probability of both left and right neutrality of any element of A which is
distinct of e is 0.
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6.2 Idempotent probabilistic groupoids

Let (A, g) be a probabilistic groupoid and a ∈ A. Then the number p =
ga,a(a) is called the probability of the idempotence of a. The element a is
said to be idempotent if p = 1.

Proposition 6.6. Let e be the unit of a probabilistic groupoid (A, g). Then
e is an idempotent element.

Let I = {gx,x(x)|x ∈ A} be the set of the probabilities of idempotence of
the elements of (A, g). Then pI = infI is called the probability of the idem-
potence of the probabilistic groupoid (A, g). Hence, the probability of the
idempotence of any particular element is at least pI . Probabilistic groupoid
(A, g) is said to be idempotent if pI = 1 (i.e., if all of its elements are
idempotent ones).

6.3 Commutative probabilistic groupoids

Let a, b ∈ A, and for every z ∈ A let pza,b = min{ga,b(z), gb,a(z)}. Let

pa,b =
∑
z∈A

pza,b.

Then we say that the elements a and b commute with probability pa,b. The
value of pcom = inf{pa,b|a, b ∈ A} is said to be the probability of the com-
mutativity of the probabilistic groupoid (A, g). (A, g) is called a commutative
probabilistic groupoid if all of its elements commute with probability one,
that is if pcom = 1.

Theorem 6.7. A probabilistic groupoid (A, g) is commutative if and only
if

(∀a, b ∈ A) ga,b = gb,a.

Proof. Let (A, g) be commutative and a, b ∈ A. Then pcom = 1 implies∑
z∈A

min{ga,b(z), gb,a(z)} = 1.

Let us assume that ga,b 6= gb,a. It means that ga,b(u) 6= gb,a(u), for some
u ∈ A. Without loss of generality we can take that ga,b(u) < gb,a(u). Then
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we obtain

1=
∑
z∈A

min{ga,b(z), gb,a(z)}=
∑
z∈A
z 6=u

min{ga,b(z), gb,a(z)}+min{ga,b(u), gb,a(u)}

6
∑
z∈A
z 6=u

gb,a(z) + ga,b(u) <
∑
z∈A
z 6=u

gb,a(z) + gb,a(u) =
∑
z∈A

gb,a(z) = 1,

a contradiction.
Let ga,b = gb,a, for all a, b ∈ A. Hence, ga,b(z) = gb,a(z), for every z ∈ A.

Then

pa,b =
∑
z∈A

pza,b =
∑
z∈A

min{ga,b(z), gb,a(z)} =
∑
z∈A

ga,b(z) = 1.

By pa,b = 1 for all a, b ∈ A, we get pcom = inf{pa,b|a, b ∈ A} = 1, that is,
(A, g) is a commutative probabilistic groupoid.

6.4 Composite products of probabilistic groupoids

Given a set A = {a1, a2, . . . , an}, we define inductively terms over the set
A as follows. Each element x ∈ A is a term of length 1, the terms of length
2 are (xy), where x, y ∈ A, and if T1 and T2 are already defined terms of
lengths l1 and l2, then (T1T2) is a term of length l1 + l2. For instance, given
x, y, z, t ∈ A, x(yz), (xy)z are terms of length 3 (and also z(tz), (tz)y, . . . ),
terms of length 4 are t(x(yz)), t((xy)z), (x(yz))t, ((xy)z)t, (xy)(zt) (and also
t(x(xx)), y((xt)t), (t(yz))x, . . . ). (Here, we avoided the non-necessary out-
side brackets.)

For a probabilistic groupoid (A, g), to each term T over the set A of
length at least 2, we associate a probability distribution gT in an inductive
way as follows. To each term ab, a, b ∈ A, of length 2 we associate the
probability distribution ga,b (the product of a and b in the probabilistic
groupoid (A, g)). To the terms T = T1T2 of length l > 3 we associate
inductively a probability distribution gT = gT1,T2 over A as follows.

(1) If T1 ∈ A then gT1,T2(z) =
∑
u∈A

gT1,u(z)gT2(u).

(2) If T2 ∈ A then gT1,T2(z) =
∑
u∈A

gT1(u)gu,T2(z).

(3) If T1, T2 /∈ A then gT1,T2(z) =
∑
u∈A

gT1,u(z)gT2(u)
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=
∑
u∈A

(∑
v∈A

gT1(v)gv,u(z)
)
gT2(u).

Note that gT1,u and gu,T2 are probability distributions and that, by the
inductive hypothesis, when T1 (or T2) is of length > 2, the probability
distribution gT1 (or gT2) is defined.

Theorem 6.8. Let (A, g) be a probabilistic groupoid and let T be a term
of length at least 2. Then gT is a probability distribution on A.

Proof. The claim is trivial when the length of T is 2. Let T be of length
at least 3, i.e., T = T1T2. We use an induction of the length of the terms.

By the definition of gT we have to consider three cases.
(1) Let T1 ∈ A. Then we have∑

z∈A
gT1,T2(z) =

∑
z∈A

∑
u∈A

gT1,u(z)gT2(u) =

=
∑
u∈A

gT2(u)
∑
z∈A

gT1,u(z) =
∑
u∈A

gT2(u) · 1 = 1.

(2) The case T2 ∈ A follows the steps of the case (1).
(3) Let T1, T2 /∈ A. Then we have∑

z∈A
gT1,T2(z) =

∑
z∈A

(∑
u∈A

gT1,u(z)gT2(u)
)

=
∑
u∈A

gT2(u)
(∑
z∈A

gT1,u(z)
)

= (by case (2), since u ∈ A)

=
∑
u∈A

gT2(u) · 1 = 1.

Example 6.9. Let (A, g), where A = {a, b}, be a probabilistic groupoid
given by the table

g ga,a ga,b gb,a gb,b
a 0.3 0.8 1 0.4
b 0.7 0.2 0 0.6

.

We have ga,(a,a) =

(
a b

0.65 0.35

)
, since ga,(a,a)(z) =

∑
u∈A

ga,u(z)ga,a(u)

and then ga,(a,a)(a) =
∑
u∈A

ga,u(a)ga,a(u) = 0.3 · 0.3 + 0.8 · 0.7 = 0.65,

ga,(a,a)(b) =
∑
u∈A

ga,u(b)ga,a(u) = 0.7 · 0.3 + 0.2 · 0.7 = 0.35.
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One can also compute that g(a,a),a =

(
a b

0.79 0.21

)
, g(b,a),(a,b) =

(
a b

0.4 0.6

)
,

and so on.

6.5 Associative probabilistic groupoids

Consider a probabilistic grou-poid (A, g). Let a, b, c ∈ A and let pza,b,c
= min{g(a,b),c(z), ga,(b,c)(z)}, where

g(a,b),c(z) =
∑
u∈A

g(a,b)(u)gu,c(z), ga,(b,c)(z) =
∑
u∈A

ga,u(z)g(b,c)(u).

Define
pa,b,c =

∑
z∈A

pza,b,c

to be the probability of the associativity of the elements a,b and c, while the
probability pass = inf{pa,b,c|a, b, c ∈ A} is referred to be the probability of
the associativity of the probabilistic groupoid (A, g). A probabilistic groupoid
is said to be associative (or a probabilistic semigroup) if pass = 1.

We prove the following statement in the same manner as Theorem 6.7.

Theorem 6.10. A probabilistic groupoid (A, g) is associative if and only if

(∀a, b, c ∈ A)ga,(b,c) = g(a,b),c.

Proof. Let (A, g) be associative probabilistic groupoid, and assume that
ga,(b,c) 6= g(a,b),c for some a, b, c ∈ A. Consequently, there is a u ∈ A such
that ga,(b,c)(u) < g(a,b),c(u) (the assumption ga,(b,c)(u) > g(a,b),c(u) would
cause negligible changes of the proof). Since 1=pass= inf{px,y,z|x, y, z∈A},
we obtain that pa,b,c = 1. Then we have:

1 = pa,b,c =
∑
z∈A

pza,b,c =
∑
z∈A

min{g(a,b),c(z), ga,(b,c)(z)}

=
∑
z 6=u

min{g(a,b),c(z), ga,(b,c)(z)}+min{g(a,b),c(u), ga,(b,c)(u)}

6
∑
z 6=u

g(a,b),c(z) +min{g(a,b),c(u), ga,(b,c)(u)}

<
∑
z 6=u

g(a,b),c(z) + g(a,b),c(u) =
∑
z∈A

g(a,b),c(z) = 1,

a contradiction. Hence, ga,(b,c) = g(a,b),c for all a, b, c ∈ A.
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On the other hand, if (∀a, b, c ∈ A)ga,(b,c) = g(a,b),c holds in a probabilis-
tic groupoid (A, g), then pza,b,c = g(a,b),c(z) = ga,(b,c)(z), for all a, b, c ∈ A,
and every z ∈ A. Therefore,

∑
z∈A

pza,b,c =
∑
z∈A

pa,(b,c)(z) = 1, that is pa,b,c = 1,

for every a, b, c ∈ A. This implies pass = inf{pa,b,c|a, b, c ∈ A} = 1, which
means that (A, g) is an associative probabilistic groupoid.

Example 6.11. We will find all probabilistic semigroups of order 2. Let
A = {a, b} and

g ga,a ga,b gb,a gb,b
a α1 α2 α3 α4

b β1 β2 β3 β4

,

where αi > 0, βi > 0, αi + βi = 1. Since we want the associativity to be
satisfied, i.e., g(a,a),a(z) = ga,(a,a)(z), g(a,a),b(z) = ga,(a,b)(z), g(a,b),a(z) =
ga,(b,a)(z), . . . . . . , g(b,b),b(z) = gb,(b,b)(z), for z ∈ {a, b}, we obtain the fol-
lowing equations with unknowns αi and βi:

α1α1 + β1α3 = α1α1 + α2β1, α1β1 + β1β3 = β1α1 + β2β1,

α1α2 + β1α4 = α1α2 + α2β2, α1β2 + β1β4 = β1α2 + β2β2,

α2α1 + β2α3 = α1α3 + α2β3, α2β1 + β2β3 = β1α3 + β2β3,

α2α2 + β2α4 = α1α4 + α2β4, α2β2 + β2β4 = β1α4 + β2β4,

α3α1 + β3α3 = α3α1 + α4β1, α3β1 + β3β3 = β3α1 + β4β1,

α3α2 + β3α4 = α3α2 + α4β2, α3β2 + β3β4 = β3α2 + β4β2,

α4α1 + β4α3 = α3α3 + α4β3, α4β1 + β4β3 = β3α3 + β4β3,

α4α2 + β4α4 = α3α4 + α4β4, α4β2 + β4β4 = β3α4 + β4β4.

After simplification of the above equalities, two cases remain to be con-
sidered.

Case 1: α4 6= 0 or β1 6= 0. Then we have α2 = α3 and β2 = β3, and
the above system reduces to

β1α4 = α2β2,

α1β2 + β1β4 = β1α2 + β2β2,

α2α2 + β2α4 = α1α4 + α2β4.

After replacing βi by 1 − αi we get that the last system reduces to one
equation

α4(1− α1) = α2(1− α2).



82 S. Markovski and L. Goračinova-Ilieva

It follows that in the case α1 6= 1 we can choose arbitrary value for α1 ∈
[0, 1) and then we have the solution

g ga,a ga,b gb,a gb,b
a α1 α2 α2 α2

1−α2
1−α1

b 1− α1 1− α2 1− α2 1− α2
1−α2
1−α1

,

for any α2 such that 0 6 α2
1−α2
1−α1

6 1. In the case α4 6= 0 we can choose
arbitrary value for α4 ∈ (0, 1] and then we have the solution

g ga,a ga,b gb,a gb,b
a 1− α2

1−α2
α4

α2 α2 α4

b α2
1−α2
α4

1− α2 1− α2 1− α4

,

for any α2 such that 0 6 α2
1−α2
α4

6 1.
We notice that in this case all probabilistic semigroups are commutative,

since ga,b = gb,a.
Case 2: α4 = 0 and β1 = 0. Then α1 = 1 and β4 = 1 and the starting

system of equations reduces to
α2 + β2α3 = α3 + α2β3, α2β2 = 0, β2β2 = β2, α2α2 = α2,
α3β2 + β3 = β2α2 + β2, α3β3 = 0, α3α3 = α3, β3β3 = β3.

There are only three solutions in this case:
(α1, α2, α3, α4) ∈ {(1, 0, 0, 0), (1, 0, 1, 0), (1, 1, 1, 0)},

and only for (α1, α2, α3, α4) = (1, 0, 1, 0) we have non-commutative (ordi-
nary) semigroup.

6.6 Probabilistic quasigroups

An ordinary groupoid (Q, ·) is said to be a quasigroup if

(∀a, b ∈ Q)(∃!x, y ∈ Q)(ax = b & ya = b).

We say that a probabilistic groupoid (Q, g) is a probabilistic quasigroup with
probability p (or a p-quasigroup) if

(∀a, b ∈ Q)(∃x, y ∈ Q)(ga,x(b) > p & gy,a(b) > p).

Note that for 0 6 q < p 6 1, every p − quasigroup is a q − quasigroup as
well. It is also clear that every probabilistic groupoid is a 0-quasigroup.
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In the case of p-quasigroups, depending of the value of p, for some
a, b ∈ Q may exist several x, y ∈ Q such that ga,x(b) > p and/or gy,a(b) > p.
Since in any distribution gα,β , when p > 1/2, may exist (if any) a unique
element b such that gα,β(b) = p, we have the following.

Proposition 6.12. If p > 1/2, then for any finite p-quasigroup it is true
that

(∀a, b ∈ Q)(∃!x, y ∈ Q)(ga,x(b) > p & gy,a(b) > p).

Proof. The proof follows by the Pigeonhole Principal. Let Q = {q1, . . . , qn}
be a p-quasigroup and p > 1/2. If ga,x1(b) > p and ga,x2(b) > p for some
a, b, x1 6= x2 ∈ Q, then we have for each of the rest n−1 elements c ∈ Q\{b}
to find some x ∈ Q \ {x1, x2} such that ga,x(c) > p.

Corollary 6.13. 1-quasigroups are ordinary quasigroups.

A probabilistic groupoid (A, g) is said to be with left (right) cancellation
if for every a, b, c ∈ A we have

ga,b = ga,c ⇒ b = c (ga,b = gc,b ⇒ a = c).

A probabilistic groupoid is said to be cancellative if it is with left and right
cancellation.

Proposition 6.14. If p > 1/2, then a p-quasigroup is a cancellative prob-
abilistic groupoid.

Proof. Let p > 1/2 and let (Q, g) be a p-quasigroup. If ga,x = ga,y, then for
the distribution ga,x there is a unique b ∈ Q such that ga,x(b) = ga,y(b) > p.
Now, by Proposition 6.12, we have x = y.

Example 6.15. A 0.5-quasigroup (Q, g), where Q = {1, 2, 3, 4}, is pre-
sented by the distributions given in Table 1. We can see there that g2,1(2) >
0.5, g1,4(2) > 0.5, g4,4(2) > 0.5, etc.

6.7 Inverse elements

Let (A, g) be a probabilistic groupoid which possess a unit e, and let a, b ∈
A. If ga,b(e) = p, then we say that a is a left inverse of b with probability
p and that b is a right inverse of a with probability p. It is obvious that
left/right p-inverses of an element do not have to exist, but if so, then there
might be more than one. If an element a is both left p-inverse and right
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g1,1 g1,2 g1,3 g1,4 g2,1 g2,2 g2,3 g2,4
1 0 0.7 0.5 0.1 0 0.3 0.5 0.04
2 0.5 0.1 0 0.6 0.5 0.1 0.5 0.36
3 0.5 0.2 0 0 0.4 0.1 0 0.5
4 0 0 0.5 0.3 0.1 0.5 0 0.1

g3,1 g3,2 g3,3 g3,4 g4,1 g4,2 g4,3 g4,4
1 0.5 0.2 0 0.1 0.1 0 0.2 0.5
2 0.4 0.55 0 0.1 0.4 0 0.5 0.5
3 0.1 0.25 0.5 0.3 0 0.5 0.13 0
4 0 0 0.5 0.5 0.5 0.5 0.17 0

Table 1: A probabilistic 0.5-quasigroup of order 4.

p-inverse of an element b, then the elements a and b are referred as mutually
p-inverse or p-inverse to each other.

If e is a unit of (A, g), then ga,e(e) = εa(e) =

{
1 : e = a,
0 : e 6= a.

Hence, the

only left p-inverse of e is e itself, and it can be only a 1-inverse as well. So,
the next property holds.

Proposition 6.16. Let e be the unit of a probabilistic groupoid (A, g). Then
e is left and right 1-inverse element to itself.

Further on, instead of a 1-inverse element, we will say simply an inverse
element.

We will prove that an inverse element in a probabilistic semigroup is
unique.

Theorem 6.17. Let the element a of a probabilistic semigroup A = (A, g)
have left inverse b and right inverse c. Then b = c.

Proof. Given that b is a left inverse and c is a right inverse of a, we will
prove that εb = εc, that implies b = c. Denote by e the unit of A. We have

gb,(a,c)(z) =
∑
u∈A

gb,u(z)ga,c(u) = gb,e(z) · 1 = gb,e(z) = εb(z),

since ga,c(e) = 1 and ga,c(u) = 0 when u 6= e. In the same way

g(b,a),c(z) =
∑

u∈A gb,a(u)gu,c(z) = 1 · ge,c(z) = ge,c(z) = εc(z).
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Now, gb,(a,c)(z) = g(b,a),c(z) implies εb(z) = εc(z) for every z ∈ A, i.e.,
εb = εc.

The unique left and right inverse of an element a ∈ A is called an inverse
of a and is denoted by a−1.

Proposition 6.18. Let (A, g) be a probabilistic semigroup with unit e and
let an element b ∈ A has a left (right) inverse. Then for every c, d ∈ A we
have

gb,c = gb,d =⇒ c = d (gc,b = gd,b =⇒ c = d).

Proof. Assume that a is a left inverse of b and gb,c = gb,d. Then ga,(b,c)(z) =∑
u∈A

ga,u(z)gb,c(u) =
∑
u∈A

ga,u(z)gb,d(u) = ga,(b,d)(z), and by associativity we

have g(a,b),c(z) = g(a,b),d(z). So,
∑
u∈A

ga,b(u)gu,c(z) =
∑
u∈A

ga,b(u)gu,d(z) and,

since ga,b(u) = 0 when u 6= e, we obtain ge,c(z) = ge,d(z). This means that
εc = εd, i.e., c = d.

As a corollary of Proposition 6.18 we have the following.

Theorem 6.19. If each element of a probabilistic semigroup has inverse,
then the semigroup is cancellative.

The next simple lemma will be used in the next section.

Lemma 6.20. If a and b are mutually inverse elements in a probabilistic
groupoid (A, g) with unit e, then for each c ∈ A we have gc,(a,b) = gc,e = εc
and g(a,b),c = ge,c = εc.

Proof. We have gc,(a,b)(z) =
∑
u∈A

gc,u(z)ga,b(u) = gc,e(z)ga,b(e) = gc,e(z) =

εc(z), since ga,b(u) = 0 when u 6= e.

7. Probabilistic groups

A probabilistic semigroup is said to be a p-probabilistic group if it has a
unit and each element has a p-inverse. In what follows we will consider
several examples in order to support our opinion that there are not finite
essential p-groups. In fact, we found (without proofs) that there are no
finite p-groups when p < 1, and that for p = 1 the probabilistic 1-groups
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are ordinary groups. Further on, we will say a probabilistic group instead
of a probabilistic 1-group.

Example 7.1. We are asking for all p-groups on the set {e, a, b}, where
0 < p < 1, e is the unit and b is a p-inverse of a. We have the distributions

ge,e ga,e = ge,a gb,e = ge,b ga,b gb,a ga,a gb,b
e 1 0 0 p p γ1 γ2
a 0 1 0 α1 α2 α3 α4

b 0 0 1 β1 β2 β3 β4

for some αi, βi, γi ∈ [0, 1], p+α1 + β1 = 1, p+α2 + β2 = 1, γ1 +α3 + β3 =
1, γ2 + α4 + β4 = 1.

By the associativity, the following 8 equations have to be satisfied for z ∈
{e, a, b}: ga,(a,a)(z) = g(a,a),a(z), ga,(a,b)(z) = g(a,a),b(z), . . . , gb,(b,b)(z) =
g(b,b),b(z). We can infer several equations in unknowns αi, βi, γi.

From ga,(a,a)(z) = g(a,a),a(z), for z = a we have

(α1 − α2)β3 = 0, (1)

and for z = b we have
(β1 − β2)β3 = 0. (2)

From ga,(a,b)(z) = g(a,a),b(z), for z = e we have

γ1α1 + pβ1 = pα3 + β3γ2, (3)

for z = a we have
p+ α1β1 = β3α4, (4)

and for z = b we have

β1α1 + β1β1 = γ1 + α3β1 + β3β4. (5)

From ga,(b,b)(z) = g(a,b),b(z), for z = e we have

γ1α4 + pβ4 = pα1 + β1γ2, (6)

and for z = a we have

α4 + α3α4 + α1β4 = α1α1 + β1α4. (7)
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From gb,(a,a)(z) = g(b,a),a(z), for z = e we have

γ2β3 + pα3 = pβ2 + α2γ1, (8)

and for z = b we have

β3 + β2α3 + β3β4 = α2β3 + β2β2. (9)

Finally, from gb,(b,a)(z) = g(b,b),a(z), for z = e we have

pα2 + γ2β2 = α4γ1 + pβ4, (10)

and for z = a we have

α2α2 + α4β2 = γ2 + α4α3 + β4α2. (11)

The equation (4), since 0 < p < 1, implies α4 > 0, β3 > 0, and then by
(1) and (2) we conclude that α1 = α2 = α and β1 = β2 = β. Now, from (5)
and (11) we have

γ1 = βα+ ββ − α3β − β3β4 (12)

and
γ2 = αα+ α4β − α4α3 − β4α. (13)

We replace γ1 and γ2 in (3) and we obtain the equation

βαα+ββα−α3βα−β3β4α+ pβ = pα3 +ααβ3 +α4ββ3−α4α3β3−β4αβ3.
(14)

After replacing α4β3 by p + αβ (according (4)) and after simplifying, we
obtain the equation βαα = ααβ3. The last equation implies α = 0 or
β = β3. We have to consider three cases.

Case α = 0 and β = β3.
We replace α = 0 and β = β3 in the equation (9) and we get β + βα3 +

ββ4 = ββ. Since β = β3 > 0, it follows that 1 + α3 + β4 = β, i.e. β = 1.
This is a contradiction with p+ α+ β = 1, p > 0.

Case α = 0 and β 6= β3.
We replace α = 0 in the equation (7) and we get α4+α3α4 = βα4. Since

α4 > 0, it follows that 1 + α3 = β, that leads to a contradiction again.

Case α > 0 and β = β3.
We replace β = β3 in the equation (9) and we get β + βα3 + ββ4 =

αβ + ββ. Since β = β3 > 0, it follows that 1 + α3 + β4 = α + β, implying
α+ β = 1. This is a contradiction with p+ α+ β = 1, 0 < p < 1.
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The obtained contradictions shows that there are no probabilistic p-
groups on the set {e, a, b}, where 0 < p < 1, e is the unit and b is a
p-inverse of a. In a similar way one can show that there are no probabilistic
p-groups on the set {e, a, b}, where 0 < p < 1, e is the unit and a (b) is a
p-inverse of a (b).

Example 7.2. Let (A, g), where A = {e, a, b}, be a probabilistic group
with unit e. Let us first assume that a−1 = a, and then b−1 = b. Then we
have the distributions

ge,e, ga,a, gb,b ga,e, ge,a gb,e, ge,b ga,b gb,a
e 1 0 0 α α1

a 0 1 0 β β1
b 0 0 1 γ γ1

for some α, β, γ, α1, β1, γ1 ∈ [0, 1], α+ β + γ = α1 + β1 + γ1 = 1.

By associativity we have g(a,a),b = ga,(a,b), where (according to Lemma
6.20) g(a,a),b(b) = εb(b) = 1, and ga,(a,b)(b) = ga,e(b)ga,b(e) + ga,a(b)ga,b(a) +
ga,b(b)ga,b(b) = γγ.

So we get the equation γγ = 1, i.e., γ = 1. This means that ge,b = ga,b,
i.e., e = a. The obtained contradiction implies that a 6= a−1.

Now, let a−1 = b. Then, by Example 7.1, for p = 1 we have α1 = β1 =
α2 = β2 = α3 = β4 = γ1 = γ2 = 0 and α4 = β3 = 1. Hence, this probability
group is in fact the cyclic group

e a b

e e a b
a a b e
b b e a

.

Example 7.3. Let (A, g), where A = {e, a, b, c}, be a probabilistic group
with unit e. We have to consider two cases, case I and case II.

I. Let first assume that a−1 = a, b−1 = b, c−1 = c. Then we have the
following distributions, presented in more compact way,

ge,e, ga,a ga,e gb,e gc,e
gb,b, gc,c ge,a ge,b ge,c ga,b ga,c gb,a gb,c gc,a gc,b

e 1 0 0 0 α1 α2 α3 α4 α5 α6

a 0 1 0 0 β1 β2 β3 β4 β5 β6
b 0 0 1 0 γ1 γ2 γ3 γ4 γ5 γ6
c 0 0 0 1 δ1 δ2 δ3 δ4 δ5 δ6
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where αi, βi, γi, δi > 0, αi + βi + γi + δi = 1, for i = 1, 2, . . . , 6.
By associativity we have the following equalities.

Case ga,(a,b) = g(a,a),b. By Lemma 6.20 we have g(a,a),b(z) = ge,b(z) =

εb(z) =

(
e a b c
0 0 1 0

)
, and we compute the distribution ga,(a,b).

ga,(a,b)(z) = ga,e(z)ga,b(e)+ga,a(z)ga,b(a)+ga,b(z)ga,b(b)+ga,c(z)ga,b(c) =

=


0
1
0
0

α1 +


1
0
0
0

β1 +


α1

β1
γ1
δ1

 γ1 +


α2

β2
γ2
δ2

 δ1 =


β1 + α1γ1 + α2δ1
α1 + β1γ1 + β2δ1
γ1γ1 + γ2δ1
δ1γ1 + δ2δ1

.
Hence, we have the following system of equations

β1 + α1γ1 + α2δ1 = 0,
α1 + β1γ1 + β2δ1 = 0,

γ1γ1 + γ2δ1 = 1,
δ1γ1 + δ2δ1 = 0,

i.e.,


α1 = β1 = 0,

α1γ1 = β1γ1 = δ1γ1 = 0,
α2δ1 = β2δ1 = δ2δ1 = 0,

γ1γ1 + γ2δ1 = 1.

We consider two possibilities.
γ1 6= 0. Then we have α1 = β1 = δ1 = 0, γ1 = 1, and this implies

ga,b = ge,b. After cancellation we get the contradiction a = e.

γ1 = 0. Then, from γ2δ1 = 1 we have γ2 = 1, δ1 = 1. Hence, we
have α1 = β1 = γ1 = 0, δ1 = 1, and this implies ga,b = ge,c, and also
α2 = β2 = δ2 = 0, γ2 = 1, implying ga,c = ge,b.

Case gb,(b,c) = g(b,b),c. By Lemma 6.20 we have g(b,b),c(z) = ge,c(z) =

εc(z) =

(
e a b c
0 0 0 1

)
, and we compute the distribution gb,(b,c).

gb,(b,c)(z) = gb,e(z)gb,c(e) + gb,a(z)gb,c(a) + gb,b(z)gb,c(b) + gb,c(z)gb,c(c) =

=


0
0
1
0

α4 +


α3

β3
γ3
δ3

β4 +


1
0
0
0

 γ4 +


α4

β4
γ4
δ4

 δ4 =


α3β4 + γ4 + α4δ4
β3β4 + β4δ4

α4 + γ3β4 + γ4δ4
δ3β4 + δ4δ4

.
Hence, we have the following system of equations

α3β4 + γ4 + α4δ4 = 0,
β3β4 + β4δ4 = 0,

α4 + γ3β4 + γ4δ4 = 0,
δ3β4 + δ4δ4 = 1,

i.e.,


α4 = γ4 = 0,

α3β4 = β3β4 = γ3β4 = 0,
α4δ4 = β4δ4 = γ4δ4 = 0,

δ3β4 + δ4δ4 = 1.

We consider two possibilities.
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β4 6= 0. Then from β4δ4 = 0 we get δ4 = 0, and so α4 = γ4 = δ4 =
0, β4 = 1, which implies gb,c = ge,a. On the other side, we have also
α3 = β3 = γ3 = 0, δ3 = 1, implying gb,a = ge,c.

β4 = 0. Then α4 = β4 = γ4 = 0, δ4 = 1, implying gb,c = ge,c, leading to
the contradiction b = e.

Case gc,(c,a) = g(c,c),a. By Lemma 6.20 we have g(c,c),a(z) = ge,a(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution gc,(c,a).

gc,(c,a)(z) = gc,e(z)gc,a(e)+gc,a(z)gc,a(a)+gc,b(z)gc,a(b)+gc,c(z)gc,a(c) =

=


0
0
0
1

α5 +


α5

β5
γ5
δ5

β5 +


α6

β6
γ6
δ6

 γ5 +


1
0
0
0

 δ5 =


α5β5 + α6γ5 + δ5
β5β5 + β6γ5
γ5β5 + γ6γ5

δ5β5 + δ6γ5 + α5

.
Hence, we have the following system of equations

α5β5 + α6γ5 + δ5 = 0,
β5β5 + β6γ5 = 1,
γ5β5 + γ6γ5 = 0,

δ5β5 + δ6γ5 + α5 = 0,

i.e.,


α5 = δ5 = 0,

α5β5 = γ5β5 = δ5β5 = 0,
α6γ5 = γ6γ5 = δ6γ5 = 0,

β5β5 + β6γ5 = 1.

We consider two possibilities.

β5 = 0. Then from β6γ5 = 1 we get β6 = 1, γ5 = 1, that implies
α6 = γ6 = δ6 = 0, β6 = 1, and we infer that gc,b = ge,a. On other side, we
also have α5 = β5 = δ5 = 0, γ5 = 1, implying gc,a = ge,b.

β5 6= 0. Then α5 = γ5 = δ5 = 0, β5 = 1, and this implies gc,a = ge,a,
leading to the contradiction c = e.

Altogether, we get ga,b = ge,c, ga,c = ge,b, gb,c = ge,a, gb,a = ge,c,
gc,b = ge,a, gc,a = ge,b. This means that the probability group is in fact
the ordinary Klein group

e a b c

e e a b c
a a e c b
b b c e a
c c b a e

.

II. The other case is c−1 = a, b−1 = b (or c−1 = b, a−1 = a, or
b−1 = a, c−1 = c, these lead to isomorphic results). Then we have the
following distributions,
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ge,e, gb,b ga,e gb,e gc,e
ga,c, gc,a ge,a ge,b ge,c ga,a ga,b gb,a gb,c gc,b gc,c

e 1 0 0 0 α1 α2 α3 α4 α5 α6

a 0 1 0 0 β1 β2 β3 β4 β5 β6
b 0 0 1 0 γ1 γ2 γ3 γ4 γ5 γ6
c 0 0 0 1 δ1 δ2 δ3 δ4 δ5 δ6

where αi, βi, γi, δi > 0, αi + βi + γi + δi = 1, for i = 1, 2, . . . , 6.
By associativity we have the following equalities.

Case g(b,b),c = gb,(b,c). By Lemma 6.20 we have gg(b,b),c(z) = ge,c(z) =

εc(z) =

(
e a b c
0 0 0

)
, and we compute the distribution gb,(b,c).

gb,(b,c)(z) = gb,e(z)gb,c(e) + gb,a(z)gb,c(a) + gb,b(z)gb,c(b) + gb,c(z)gb,c(c) =

=


0
0
1
0

α4 +


α3

β3
γ3
δ3

β4 +


1
0
0
0

 γ4 +


α4

β4
γ4
δ4

 δ4 =


α3β4 + γ4 + α4δ4
β3β4 + β4δ4

α4 + γ3β4 + γ4δ4
γ3β4 + δ4δ4

.
Hence, we have the following system of equations

α3β4 + γ4 + α4δ4 = 0,
β3β4 + β4δ4 = 0,

α4 + γ3β4 + γ4δ4 = 0,
γ3β4 + δ4δ4 = 1,

i.e.,


α4 = γ4 = 0,

α3β4 = β3β4 = γ3β4 = 0,
α4δ4 = β4δ4 = γ4δ4 = 0,

γ3β4 + δ4δ4 = 1.

We consider two possibilities.
β4 6= 0. Then we have α3 = β3 = γ3 = 0, δ3 = 1, implying gb,a = ge,c.

It follows from β4δ4 = 0 that δ4 = 0, i.e., we have α4 = δ4 = γ4 = 0, β4 = 1,
and so we have gb,c = ge,a.

β4 = 0. Then from δ4δ4 = 1 we have α4 = β4 = γ4 = 0, δ4 = 1, leading
to the contradiction gb,c = ge,c.

Case g(a,a),c = ga,(a,c). By Lemma 6.20 we have ga,(a,c)(z) = ga,e(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution g(a,a),c.

g(a,a),c(z) = ga,a(e)ge,c(z)+ga,a(a)ga,c(z)+ga,a(b)gb,c(z)+ga,a(c)gc,c(z) =

= α1


0
0
0
1

+ β1


1
0
0
0

+ γ1


α4

β4
γ4
δ4

+ δ1


α6

β6
γ6
δ6

 =


β1 + γ1α4 + δ1α6

γ1β4 + δ1β6
γ1γ4 + δ1γ6

α1 + γ1δ4 + δ1δ6

.
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Hence, we have the following system of equations
β1 + γ1α4 + δ1α6 = 0,

γ1β4 + δ1β6 = 1,
γ1γ4 + δ1γ6 = 0,

α1 + γ1δ4 + δ1δ6 = 0,

i.e.,


α1 = β1 = 0,

γ1α4 = γ1γ4 = γ1δ4 = 0,
δ1α6 = δ1γ6 = δ1δ6 = 0,

γ1β4 + δ1β6 = 1.

We consider two possibilities.

δ1 6= 0. Then we have α6 = γ6 = δ6 = 0, β6 = 1, leading to a contradic-
tion gc,c = ga,e, since we have shown in the previous case that gb,c = ga,e.

δ1 = 0. Then we have α1 = β1 = δ1 = 0, γ1 = 1, and this gives
ga,a = gb,e.

Case g(a,b),b = ga,(b,b). By Lemma 6.20 we have ga,(b,b)(z) = ga,e(z) =

εa(z) =

(
e a b c
0 1 0 0

)
, and we compute the distribution g(a,b),b.

g(a,b),b(z) = ga,b(e)ge,b(z)+ga,b(a)ga,b(z)+ga,b(b)gb,b(z)+ga,b(c)gc,b(z) =

= α2


0
0
1
0

+ β2


α2

β2
γ2
δ2

+ γ2


1
0
0
0

+ δ2


α5

β5
γ5
δ5

 =


β2α2 + γ2 + δ2α5

β2β2 + δ2β5
α2 + β2γ2 + δ2γ5
β2δ2 + δ2δ5

.
Hence, we have the following system of equations

β2α2 + γ2 + δ2α5 = 0,
β2β2 + δ2β5 = 1,

α2 + β2γ2 + δ2γ5 = 0,
β2δ2 + δ2δ5 = 0,

i.e.,


α2 = γ2 = 0,

β2α2 = β2γ2 = β2δ2 = 0,
δ2α5 = δ2γ5 = δ2δ5 = 0,

β2β2 + δ2β5 = 1.

We consider two possibilities.

δ2 6= 0. Then we have α5 = γ5 = δ5 = 0, β5 = 1, implying gc,b = ge,a.
It follows from β2δ2 = 0 that β2 = 0, i.e., we have α2 = β2 = γ2 = 0, δ2 = 1,
and so we have ga,b = ge,c.

δ2 = 0. Then from β2β2 = 1 we have α2 = γ2 = δ2 = 0, β2 = 1,, leading
to the contradiction ga,b = ga,e.

Until now he have proved that gc,b = ge,a, ga,b = ge,c, gb,a = ge,c,
gb,c = ge,a, ga,a = gb,e. We will show that the equality gc,c = ge,b is also
true. Namely, from gc,b = ga,e, we have gc,(c,b) = gc,(a,e) = g(c,a),e =
ge,e = εe, and hence g(c,c),b = gc,(c,b) = εe. Now, g((c,c),b),b = ge,b, i.e.,
g(c,c),(b,b) = g(c,c),e = gc,c = ge,b. The obtained equalities show that this
probabilistic group is in fact the cyclic group
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e a b c

e e a b c
a a b c e
b b c e a
c c e a b

.

The careful analyses of the Examples 7.2 and 7.3 can give us a hint for
proving the following Hypothesis.

Hypothesis. Each finite probabilistic group is a group.

We are not going to give a complete proof here, mainly because of tech-
nical reasons. We only show how a proof can be inferred for finite groups.

Let (A, g) be a probabilistic group with unit e, where A = {e, a1, a2, an}.
Let suppose that a−12 = a1, i.e., ga1,a2 = ga2,a1 = εe. Take an element
ak, k > 2, and consider the associativity g(a1,a2),ak = ga1,(a2,ak). By

Lemma 6.20 we have g(a1,a2),ak = εak =

(
e a1 a2 . . . ak . . . an
0 0 0 . . . 1 . . . 0

)
,

and we compute the distribution ga1,(a2,ak)(z) =
∑
u∈A

ga1,u(z)ga2,ak(u). (Note

that ga2,ak(u) ∈ A and ga1,u(z) are distributions.) The same way as in Ex-
amples 7.2 and 7.3 we will get a system of equations of type α = 0, αβ = 0
for many unknowns α, β, γ, . . . and only one equation of type αβ + γδ =
1. From these equations one can infer equalities of type gai,aj = gar,e.
Note that, for the inverses a1, a2, we have 4(n − 2) equalities of types
g(a1,a2),ak = ga1,(a2,ak), gak,(a1,a2) = g(ak,a1),a2), g(a2,a1),ak = ga2,(a1,ak) and
gak,(a2,a1) = g(ak,a2),a1) (k = 3, 4, . . . , n). Totally, since there are altogether
n − 1 pairs of inverses of types (ai, aj), (aj , ai) or (ai, ai), we can produce
4(n−1)(n−2) system of equations of previous type. Since the probabilistic
group (A, g) have (n − 1)(n − 2) distributions of type gai,aj , where ai 6= e
or aj 6= e or ai, aj are not mutually inverse, it is reasonable to assume that
for each i, j one can find an r such that gai,aj = gar,e.

8. Conclusion

We have introduced the concept of probabilistic algebras, and our attention
was given mainly to some types of probabilistic groupoids, and we had
considered only the finite case.
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The ideas of this paper are, in best of our knowledge, quite new. By
retrieving the literature we could not find any notion or concept for proba-
bilistic algebras.

The future work on probabilistic algebras can include (and are not re-
stricted to) the following problems:

1. Define and investigate probabilistic groupoids on arbitrary universe
(finite or infinite).

2. Define and investigate other types of probabilistic algebras (rings,
lattices, modules, ...).

3. Prove the Hypothesis from Section 7 for finite groups.

4. Prove the Hypothesis from Section 7 for infinite groups (if it is true
in the infinite cases).

5. Is it true that there are no finite p-groups when 0 < p < 1? What
about the infinite case?

6. Define probabilistic varieties of algebras.

7. Is it true that the distribution of gT , when the length of the term T
goes to infinity, is uniform? Can be characterized the class of proba-
bilistic groupoids with this property?

8. How it can be defined quotient operations for probabilistic quasi-
groups? Can we apply them in cryptography and coding theory?

Remark for References: We could not find any reliable reference, except
standard college algebra textbooks.
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Complete signature randomization
in an algebraic cryptoscheme with a hidden group

Alexandr A. Moldovyan

Abstract. The issue of the signature randomization in algebraic cryptoschemes with a
hidden group, which are based on the computational difficulty of solving large systems of
power equations, is considered. To ensure complete randomization of the signature, the
technique of doubling the verification equation was used to specify the hidden group. A
specific signature algorithm is proposed that uses 4-dimensional non-commutative asso-
ciative algebra as an algebraic support. Known results on the study of the structure of
this algebra were used in constructing the proposed algorithm and estimating its security.
The question of implementing similar algorithms on finite non-commutative associative
algebras of dimensions m > 6 is related to the open problem of studying their structure
from the point of view of decomposition into a set of commutative subalgebras.

1. Introduction

Design of algebraic signature algorithms with a hidden group [11, 17] had
been proposed as a way to solve the current problem of developing practical
post-quantum signature algorithms [1]. One can distinguish two main types
of the said signature schemes, which use finite non-commutative associative
algebras as their algebraic carrier: 1) based on the computational difficulty
of solving the hidden discrete logarithm problem [13, 16] and 2) based on
the computational difficulty of solving lage systems of power equations with
many unknowns [4, 9, 17].

The latter computationally difficult problem has been well tested as a
post-quantum primitive of multivariate-cryptography algorithms developed
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from 1988 [8] to the present [7, 10]. However, the known multivariate-
cryptography algorithms have a significant drawback for practical applica-
tion, which is the very large size of the public key.

The second type of the said algebraic signature algorithms is of special
interest as an approach to developing signature schemes possessing small-
size public key, which are based on the computational complexity of systems
of many power equations with many unknowns. In fact, only the first step
has been taken in this direction and it is necessary to study various aspects
of the design of the second type algebraic algorithms with a hidden group.
A common feature of the known algorithms of this type is specifying a
digital signature that includes a certain vector S as its element. In this
case, a vector-type verification equation is used with the repeated entry of
the vector S as a multiplier. In the next section it is shown that the said
feature is connected with a restricted randomization of the signature (in
sens that only a small part of the elements of the algebra used as algebraic
support can be potentially spesified as the vector S).

The latter creates the preconditions for potential attacks on algorithms
of the type under consideration, therefore this article proposes the design of
algebraic signature schemes with a hidden group, which ensures complete
randomization of the signature (in sens that all reversible vectors can be
potentially spesified as the vector S).

2. Preliminaries

Some m-dimensional vector A usually is denoted as A = (a0, a1, . . . , am−1)
or as A =

∑m−1
i=0 aiei, where a0, a1, . . . , am−1 are coodinates taking on the

values in some finite field (for example, in GF (p)); e0, e1, ... em−1 are
basis vectors. In a finite m-dimensional vector space we have two standard
operations: 1) addition of vectors and 2) scalar multiplication. Suppose the
vector multiplication operation is additionally specified so that it is closed
and distributive at the right and at the left relatively the addition operation.
Then we get a finite m-dimensional algebra.

The most interesting cases of the development of the algebraic signature
algorithms with a hidden group relates to the use of finite non-commutative
associative algebras (FNAA) with global two-sided unit. The property of
associativity is required due to using the exponentiation operations in the
signature-algorithms design (when multiplication is associative one can very
efficiently perform the exponentiation to a degree of large size).
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The operation of multiplying two vectors A and B (coordinates of which,
for example, are elements of the field GF (p)) can be defined by the formula

AB =

m−1∑
i=0

m−1∑
j=0

aibj(eiej),

where every of the products eiej is to be substituted by a vector (usually
single-component vector λek, where λ ∈ GF (p)) indicated in the cell at the
intersection of the ith row and jth column of basis vector multiplication
table (BVMT). Table 1 shows a specific example of BVMTs. To define
associative multiplication the BVMT should be composed so that multi-
plication of all possible triples of the basis vectors (ei, ej , ek) satisfies the
following equality:

(eiej) ek = ei (ejek) .

The multiplication operation specified by Table 1 is associative, namely,
we have a four-dimensional FNAA with the global two-sided unit E =
(0, 0, 1, 1), structure of which is well studied from the point view of decom-
position into the set of commutative subalgebras [14]. Every of the latter
has order p2. The full number of the latter is η = p2 + p + 1. Arbitrary
two subalgebras intersect exactly in the set of scalar vectors L = λE, where
λ ∈ GF (p). Exactly three types of commutative subalgebras of order p2

exist [14]:
1) containing multiplicative group possessing two-dimensional cyclicity

and having order Ω = (p− 1)2;
2) containing cyclic multiplicative group of order Ω = p(p− 1);
3) containing cyclic multiplicative group of order Ω = (p2 − 1).
The number of commutative subalgebras of the first (η1), second (η2),

and third (η3) type is equal to [14]:

η1 =
p(p+ 1)

2
; η2 = p+ 1; η3 =

p(p− 1)

2
. (1)

In the paper [14] the formulas describing all elements of every type of the
subalgebras are also derived, which provide possibility to express all ele-
ments of a subalgebra via coordinates of one given representtative (that is
not a scalar vector) of the subalgebra.

The algebraic support of one of the algebraic signature schemes proposed
in [17] represents a 4-dimensional FNAA (set over GF (p) with p = 2q + 1,
where q is a 128-bit prime) containing sufficiently large number of different
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Table 1

The BVMT setting a sparse 4-dimensional FNAA over GF (p); λ 6= 0 [14].

◦ e0 e1 e2 e3
e0 0 λe3 e0 0
e1 λe2 0 0 e1
e2 0 e1 e2 0
e3 e0 0 0 e3

commutative groups having order q2 and possessing two-dimensional cyclic-
ity (a minimum generator system of such groups includes two vectors of the
same order equal to q). In that signature scheme the public key represents
the set of the vectors Y, Z, U, and W calculated as follows:

Y = AGB, Z = AGx1B;

U = AHB, W = AHx2A−1,
(2)

where x1 < q and x2 < q are random natural numbers; the vectors G and H
compose a minimum generator system of the commutative hidden group;
the vectors A and B satisfy the conditions AB 6= BA, AG 6= GA, and
BG 6= GB. The values x1, x2, A, and B are elements of the private key
connected with the public key. The signature (e1, e2, e3, S) to an electronic
document M is generated as follows [17]:

1. Using random natural numbers k < q and t < q, calculate the vector

R = AGkHtA−1. (3)

2. Using a specified 384-bit hash function fh, calculate the first signature
element e = e1||e2||e3 = fh (M,R) represented as concatenation of three
128-bit integers e1, e2, and e3.

3. Calculate the integers n and u:

n =
k − x1e2e3 − e3
e3 + e1e3 + e2e3

mod q; u =
t− x2e2e3 − e1e3
e3 + e1e3 + e2e3

mod q.

4. Calculate the second signature element

S = B−1GnHuA−1. (4)

The signature verification procedure includes the next steps:
1. Calculate the vector R′ = (Y S (US)e1 (ZSW )e2)e3 .
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2. Concatenate the vector R′ to the documentM and compute the hash
value e′ = fh (M,R′) .

3. If e′ = e (e′ 6= e,), then the signature is genuine (false).
In the formulas (3) and (4) the integers k, t, n, and u are random, but

the vectors G, H, A and B are fixed. Therefore, each of the vectors R and
S takes only q2 = O(p2), where O(·) is the order notation, different values
in the FNAA containing p4 different vectors. This shows that the signature
randomization in the algorithm [17] is quite limitted. The latter creates
potential preconditions for reducing security, which is assessed in [17] by
the value of the computational difficulty of solving a system of quadratic
equations connecting the elements of the public key with the elements of
the secret key (see formulas (2)).

Indeed, one can show that a genuine signature S1 = B−1Gn1Hu1A−1

defines four quadratic scalar equations with twelve fixed scalar uknowns
(coordinates of the vectors B−1, A−1, and Gn1Hu1) and each additional
genuine signature Si (i = 2, 3, . . . ) adds four cubic scalar equations con-
taining only two new scalar unknowns (due to limitted signature random-
ization). The latter describes an unknown vector GniHui from the hidden
group that is fixed by coordinates of the vector Gn1Hu1 (see formula (8)
in [17], which describes all elements of commutative subalgebra contain-
ing multiplicative group with two-dimensional cyclicity). For example, five
(six) different genuine signatures set a system of 20 (24) scalar equations
(quadratic and cubic) with 20 (22) unknowns.

A similar consideration of the system of scalar power equations defined
by the vector R′ = R (for genuine signatures) and by formula (3) leads to
a smaller system of quadratic and cubic equations (note that formula (3)
defines the equation RA = AGkHt). Namely, three (four) different genuine
signatures set a system of 12 (16) scalar equations (quadratic and cubic)
with 12 (14) unknowns, whereas formulas (2) with the additional equations
GGx1 = Gx1G, GH = HG, and GHx2 = Hx2G define a system of 28 power
equations with 24 unknowns [17].

In the algebraic signature algorithm [4] based on difficulty of solving
large systems of power equations, consideration of the systems of scalar
equation composed for both the randomization vectors R and the genuine
signatures S is similar to the above case.

Thus, the limitted randomization of the signature in the known algebraic
algorithms based on computational difficulty of solving large systems of
power equations leads to potential reduction of the security. Therefore, the
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task of insuring the complete signature randomization is relevant.

3. Technique for complete randomization

Completeness of the signature randomization assumes the the signature
element S can potentially take on arbitrary reversible value in the FNAA
used as algebraic support. This can be provided with introducing a random
reversible vector V as a multiplier in the formula for computation of the
signature element S. However, this eliminates the possibility of using a
verification equation with multiple entry of the signature element S. In
order to get around this contradiction, you can use the technique of doubling
the verification equation, which was previously used in the papers [12, 18]
introducing specific signature algorithms with a hidden group, which are
based on computational difficulty of the hidden discrete logarithm problem.

Namely, when using the FNAA specified by Table 1 over GF (p), where
p = 2q+1 with 192-bit prime q, we suppose the signature element S should
satisfy the following two different verification equations in which the public
key elements Y1, T1, Z1, and U1 in the first equation and Y2, T2, Z2, and
U2 in the second equation are computed as masked elements of the hidden
group Γ<G,H> set by the minumum generator system <G,H>:{

R′1 = Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1 ;

R′2 = Y e1
2 T2Z

e2
2 U2SQ

h
2 ,

(5)

where Q1 and Q2 (Q1Q2 6= Q2Q1) are two vectors of the order p2−1, which
represent common public parameters; σ1 < q and σ2 < q are auxiliary
elements of the signature; h = h1||h2 = fh (M) is a 384-bit hash-function
value represented as concatenation of two 192-bit integers h1 and h2.

The public key elements are computed as follows:
1. Generate a random pair of vectors < G,H > of order q, which specify

the minumum generator system of the hidden group of order q2.
2. Generate at random natural numbers (< q) xy, xz, t11, t12, u11, u12,

t21, t22, u21, u22.
3. Generate random vectorsA, B, C, D, and F satisfying the inequalities

AB 6= BA, AG 6= GA, AC 6= CA, AD 6= DA, AF 6= FA, BG 6= GB,
BC 6= CB, BD 6= DB, BF 6= FB, CG 6= GC, CD 6= DC, CF 6= FC,
DG 6= GD, DF 6= FD, and FG 6= GF.

4. Calculate the vectors {Jt1, Ju1, Jt2, Ju2} ∈ Γ<G,H>: Jt1 = Gt11Ht12 ,
Ju1 = Gu11Hu12 , Jt2 = Gt21Ht22 , Ju2 = Gu21Hu22 .
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5. Calculate the public key as the set of vectors {Y1,Z1,T1,U1,Y2,Z2,T2,U2}
(with total size equal to ≈768 bytes):

Y1 = AGxyA−1;Z1 = BHxzB−1;T1 = AJt1B
−1;U1 = BJu1F

−1;

Y2 = CGC−1;Z2 = DHD−1;T2 = CJt2D
−1;U2 = DJu2F

−1.
(6)

The private key corresponding to the public key is the next set of ele-
ments {xy, xu, G,H, Jt1, Ju1, Jt2, Ju2, A,B,C,D, F with total size equal to
≈1104 bytes.

If we specify computation of the pair of randomization vectors R1 =
AGk1Hr1Jt1Ju1V Q

h1h2
1 and R2 = CGk2Hr2Jt2Ju2V Q

h
2 (where k1, r1, k2,

and r2 are random natural numbers; h is the 384-bit hash value h = h1||h2 =
fh(M) computed from the document M to be signed), then with the pair
of verification equations (5) and with public key elements (6) the required
signature element S is to be calculated as

S = FGnHuV, (7)

where V is a random reversible vector and the integers n and u are precom-
puted, depending on the signature randomization elements e1 and e2, such
that e1||e2 = fh (M,R1, R2) , and on random integers k1, r1, k2, and r2.

Thus, the signature element S is computed depending on a random
multiplier V, thefore complete signature randomization is provided.

4. The proposed signature scheme

The used algebraic support, the common public parameters Q1, Q2, the
private key, and the public key have been presented in Section 3. The
signature generation algorithm is described as follows:

1. Generate at random natural numbers k1, r1, k2, and r2 (< q) and
calculate the 384-bit hash-function value h = h1||h2 = fh(M) (where M is
a signed document; h1 and h2 are 192-bit integers) and the vectors R1 and
R2:

R1 = AGk1Hr1Jt1Ju1V Q
h1h2
1 ;

R2 = CGk2Hr2Jt2Ju2V Q
h
2 .

(8)

2. Compute the hash-function value e = e1||e2 (the first signature
element), where || denotes the concatenation operation, from the docu-
ment M to which the vectors R1 and R2 are concatenated: e = e1||e2 =
fh (M,R1, R2) , where e1 and e2 are 192-bit integers.
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3. Calculate the integers n, u, σ1, and σ2:

n = k2 − e1 mod q; u = r2 − e2 mod q;

σ1 =
k1 − k2 + e1

xye1
mod q; σ2 =

r1 − r2 + e2
xze2

mod q.

4. Calculate the second signature element S:

S = FGnHuV.

The signature is e1, e2, σ1, σ2, S and has total size equal to ≈192 bytes.
Computational complexity w of the signature generation alorithm is roughly
equal to six exponentiations in the FNAA set by Table 1, i. e., to w ≈ 13, 824
multiplications modulo a 193-bit prime p.

The verification of the signature e1, e2, σ1, σ2, S to the document M is
performed with the following algorithm:

1. Calculate the hash-function value h = h1||h2 = fh (M) from the
document M . Then calculate the vectors R′1 and R′2 by formulas (5).

2. Compute the hash-function value e′ from the document M to which
the vectors R′1 and R′2 are concatenated: e′ = f (M,R′1, R

′
2) .

3. If e′ = e1||e2, then the signature is genuine, else the signature is false.
The computational complexity w′ of the signature verification algorithm

is roughly equal to four exponentiations in the 4-dimensional FNAA used as
algebraic support, i. e., w′ ≈ 9, 216 multiplications modulo a 193-bit prime
p.

Correctness proof of the signature scheme.
Taking into account that the vectors G,H, Jt1, Ju1, Jt2, Ju2 are elements of
the commutative group Γ<G,H> and have order q, one can show that the
correctly computed signature e1, e2, σ1, σ2, S passes the verification proce-
dure as genuine one:

R′1 = Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1

=
(
AGxyA−1

)e1σ1 AJt1B−1 (BHxzB−1
)e2σ2 BJu1F−1 (FGnHuV )Qh1h21

= AGxye1σ1Jt1H
xze2σ2Ju1G

nHuV Qh1h21

= AG
xye1

k1−k2+e1
xye1 Jt1H

xze2
r1−r2+e2

xze2 Ju1G
k2−e1Hr2−e2V Qh1h21

= AGk1−k2+e1Hr1−r2+e2Gk2−e1Hr2−e2Jt1Ju1V Q
h1h2
1

= AGk1Hr1Jt1Ju1V Q
h1h2
1 = R1;

R′2 = Y e1
2 T2Z

e2
2 U2SQ

h
2
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=
(
CGC−1

)e1 CJt2D−1 (DHD−1)e2 DJu2F−1 (FGnHuV )Qh1h21

= CGe1Jt2H
e2Ju2G

k2−e1Hr2−e2V Qh2 = R2;

{R′1 = R1; R
′
2 = R2} ⇒ fh(M,R′1, R

′
2) = fh(M,R1, R2) ⇒ e′ = e1||e2.

5. Disscussion

The completeness of signature randomization in the algorithm described
in Section 4 is connected with the fact that calculating a value of genuine
signature involves multiplying by a random vector V , therefore, for arbitrary
fixed set of values of the vectors F , Gn, and Hu (see formula (7)) the value
of the signature can take any reversible value in the FNAA used as an
algebraic support. However, for a certain number of genuine signatures it
is possible to calculate the unknown value F (the unknown vectors Gn and
Hu are not element of the private key).

The latter can be done by constructing a systems of vector equations set
by formulas (7) and (8) for different signatures S connected with different
pairs of the vectors R1 and R2. For example, one signature S defines the
following three quadratic vector equations

SV −1 = F (GnHu)

R1V
−1Q−h1h21 = A

(
Gk1Hr1Jt1Ju1

)
;

R2V
−1Q−h2 = C

(
Gk2Hr2Jt2Ju2

)
,

(9)

where the vectors R1, R2, Q
h1h2
1 , and Qh2 are calculated in framework of the

signature verification procedure.
In the system of equations (9) each of the productsGnHu, Gk1Hr1Jt1Ju1,

and Gk2Hr2Jt2Ju2 sets a random selection of an element from a hidden
group Γ<G,H>. The latter is fixed, if we fix the unknownG = (g0, g1, g2, g3) .
All elements X = (x0, x1, x2, x3) of the commutative subalgebra that con-
tains the group Γ<G,H> are described by the following formula including
fixed coordinates (g0, g1, g2, g3) and two scalar variables i, j ∈ {0, 1, ..., p−1}
(see formula (8) in [14]):

X = (x0, x1, x2, x3) =

(
i,
g1
g0
i, j, j +

g3 − g2
g0

i

)
. (10)

Therefore, a random selection from the hidden group can be described with
the scalar unknowns i and j. Using formula (10) we can reduce the number
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of scalar unknowns, but the respective scalar equations become cubic (how-
ever, the computational complexity of solving a system of quadratic and of
cubic equation is of the same order for the same number of equations [3]).
Taking into account these remarks, we have four fixed vector unknowns A,
C, F, and G (setting 16 scalar unknowns that are coodinates of the said
vectors), a unique vector unknown V −1 for a triple of equations related to
the same signature, and unique pair of scalar unknowns i and j in each
vector equation of the considered system. If we have b different genuine
signatures, then we can compose a system of 3b different vector equations
and represent it as a system of 12b cubic scalar equations with d unknowns,
where

d = 16 + 4b+ 2·3b = 16 + 10b.

From the condition d = 12b we can fined the number of signatures b =
8, when the nuber of scalar unknowns is equal to the number of scalar
equations and the system includes 96 power (quadratic and cubic) scalar
equations.

A system of quadratic vector equations composed using formulas (6) de-
scribing connection of the public-key elements with the private-key elements
is as follows:


Y1A = AGxy ; Z1B = BHxz ; T1B = AJt1; U1F = BJu1;

Y2C = CG; Z2D = DH; T2D = CJt2; U2F = DJu2;

GH = HG; GJt2 = Jt2G; GJu2 = Ju2G;

GGxy = GxyG; GHxz = HxzG; GJt1 = Jt1G; GJu1 = Ju1G,

(11)

where the last seven equations reflect the fact that the unknown vectors
G, Gxy , H, Hxz , Jt1, Ju1, Jt2, and Ju2 are selected from the hidden group
Γ<G,H>. When representing this system of vector equation as a system of
scalar equations, the last seven equations in (11) can be reduced with using
formula (10) and considering the unknown vector G = (g0, g1, g2, g3) as
element fixing the group Γ<G,H> (coordinates of arbitrary vector included
in the hidden group can be described via coordinates of G and a unique pair
of scalar unknowns i and j). For example, using Table 1, the first vector
equation in (11), namely, Y1A = AGxy (where Y1 = (y0, y1, y2, y3) and
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A = (a0, a1, a2, a3)) is represented by the following four scalar equations:
y0a2 + y3a0 = a0j + a3i;

y2a1g0 + y1a3g0 = a2g1i+ a1g0j + a1g3 − a1g2;
λy1a0 + y2a2 = λa1i+ a2j;

λy0a1g0 + y3a3g0 = λa0g1i+ a3g0j + a3g3 − a3g2,

Each of the other vector equations in (11) is transformed into a similar four
scalar equations.

In this way we get a system of 32 quadratic and cubic scalar equations
with 40 scalar unknowns. The latter suggests that there are numerous
solutions defining many equivalent keys. However, their calculation involves
solving a system of 32 cubic equations. The complexity of solving a system
of power equations depends exponentially on the number of equation (and
weakly depends on the degree of equations [3]) and determines the security
of the algorithm under consideration to a direct attack.

A system of power equations composed for a set of known genuine sig-
natures includes significantly larger number of equations than the system
composed from formulas describing connection of public-key elements with
the private-key elements, therefore one can conclude that using the known
signatures can not be used to reduce the security level of the introduced
signature algorithm, i. e. the proposed signature randomization technique
is efficient.

The best-known methods for solving a large system of power equations
use the algorithms F4 [5] and F5 [6]. Taken into account the latter algo-
rithms, the paper [2] presents the minimum number of power equations in
different fields GF (q′) that is requiered to get the security level (ψ) 280, 2100,
2128, 2192, and 2256 for the case when the number of equations is approxi-
mately equal to the number of unknowns (see Table 2). Using that results,
security of the introduced signature algorithm to direct attack can be es-
timeted as ≈2100. To improve the security level one can try to implement
the algorithm from Section 4 on FNAAs having dimensions m ≥ 6. Suitable
non-commutative algebras are described, for example, in [15]. However, the
decomposition of that FNAAs into the set of commutative subalgebras (re-
sults of which are useful for both the design and the security evaluation)
has not been studied yet, therefore, for such versions of the algorithm it
is not entirely clear how one can minimize the number of equations in the
system of scalar equations, to which the system of vector equations (11) is
reduced.
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Table 2

The minimum number of equations in GF (q′) by [2].

ψ = . . . 280 2100 2128 2192 2256

q′ = 16 30 39 51 80 110
q′ = 31 28 36 49 75 103
q′ = 256 26 33 43 68 93

Leaving the said implementations for future research, we note that at
the moment, the assessment of the security level of the proposed algorithm
is quite rough and applies only to direct attacks related to solving a system
of quadratic vector equations (11) connecting elements of public and private
keys. Obviously, further analysis of resistance to attacks of various types is
required. At the moment we only claim that the randomization technique
used ensures sufficient completeness of the signature randomization.

In the first and second verification equations (5) the most right mul-
tipliers Qh1h21 and Qh2 are used to insure security to the following algo-
rithm for forging a signature. Suppose a genuine signature e1, e2, σ1, σ2, S
is available and an attacker is intended to forge a signature e′′1, e′′2, σ′′1 , σ′′2 , S′′

to the document M ′′. From equations (5) he can calculate the vectors
R′′1 = R′1 and R′′2 = R′2, the values e′′ = e′′1||e′′2 = fh (M ′′, R′′1 , R

′′
2) and

h′′ = h′′1||h′′2 = fh (M ′′) , where e′′1, e′′2, h′′1, and h′′2 are 192-bit integers.
Since R′′1 = R′1, from the first of equations (5) one gets the value S′′ =

S′′1 :
Y e1σ1
1 T1Z

e2σ2
1 U1SQ

h1h2
1 = Y

e′′1σ
′′
1

1 T1Z
e′′2σ
′′
2

1 U1S
′′
1Q

h′′1h
′′
2

1 ⇒

⇒ S′′1 = FGxy(e1σ1−e
′′
1σ
′′
1 )Hxz(e2σ2−e′′2σ′′2 )F−1SQ

h1h2−h′′1h′′2
1 ,

Since R′′2 = R′2, from the second of equations (5) one gets the value S′′ = S′′2 :

Y e1σ1
2 T2Z

e2σ2
2 U2SQ

h
2 = Y

e′′1σ
′′
1

2 T2Z
e′′2σ
′′
2

2 U2S
′′
2Q

h′′
2 ⇒

⇒ S′′2 = FGe1σ1−e
′′
1σ
′′
1He2σ2−e′′2σ′′2F−1SQh−h

′′

2 .

Then the attacker calculates the signature elements σ′′1 = σ1e1e
′′
1
−1 and

σ′′2 = σ2e2e
′′
2
−1 for which he has S′′1Q

h′′1h
′′
2−h1h2

1 = S′′2Q
h′′−h
2 .

Thus, due to using the multiplications by Qh1h21 and Qh2 (such that
Q1Q2 6= Q2Q1) in the first and second verification equations, correspond-
ingly, the probability of the equality S′′1 = S′′2 = S′′ that take place, if h′′ = h
(i. e., probability of successful signature forgery) is negligible (≈2−384 for
the used 384-bit hash function).
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6. Conclusion

The proposed technique for complete signature randomization can be imple-
mented in algebraic signature algorithms with a hidden group and doubled
verification equation. The structure of the algebra used as an algebraic
carrier, from the point of view of decomposition into a set of commuta-
tive subalgebras, is essential for the development of signature schemes and
assessment of their security. To develop new versions of the proposed algo-
rithm on FNAAs of dimension m ≥ 6, it is of interest to study the structure
of the latter.
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On weakly f-clean rings

Fatemeh Rashedi

Abstract. Let R be an associative ring with identity and Id(R) and K(R) denote the
set of idempotents and full elements of R respectively. The notion of weakly f -clean
rings where element r can be written as r = f + e or r = f − e, e ∈ Id(R) and f ∈ K(R)

was introduced. Different properties of weakly f -clean rings were studied. It was shown
that a left quasi-duo ring R is weakly clean if and only if R is a weakly f -clean ring.
Finally, it was shown that the ring of skew Hurwitz series T = (HR,α) where α is an
automorphism of R is weakly f -clean if and only if R is weakly f -clean.

1. Introduction

Let R be an associative ring with identity and U(R) and Id(R) denote the
set of units and idempotents of R respectively. The ring R is clean if for
each r ∈ R there exist u ∈ U(R) and e ∈ Id(R) such that r = u+ e [2, 15].
A ring R is weakly clean if each r ∈ R can be written in the form r = u+e or
r = u−e where u ∈ U(R) and e ∈ Id(R) [1, 5, 8, 13]. Other generalizations
of clean rings have been introduced [3, 6, 9, 10, 16] An element f ∈ R is full
element if there exist x, y ∈ R such that xfy = 1. K(R) will denote the set
of full elements of R. An element r ∈ R is said to be f -clean if it can be
written as the sum of an idempotent and a full element. A ring R is said
to be f -clean if each element in R is a f -clean element [12, 14].

In this paper, we introduce the notion of a weakly f -clean ring as a new
generalization of a weakly clean ring and a f -clean ring. Let R be a ring.
An element r ∈ R is called weakly f -clean if there exist f ∈ K(R) and
e ∈ Id(R) of R such that r = f + e or r = f − e. A ring R is called weakly
f -clean if every element of R is weakly f -clean. Various properties of weakly
f -clean rings and weakly f -clean elements were studied. We showed that,
every homomorphic image of a weakly f -clean ring is weakly f -clean and

2010 Mathematics Subject Classification: 16U99, 16Z05.
Keywords: Weakly clean ring, f -clean ring, Weakly f - clean ring.
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∏
i∈I Ri is weakly f -clean if and only if every Ri is weakly f -clean (Lemma

2.8). We also showed that, if R is a weakly f -clean ring and e ∈ R is a
central idempotent, then the corner ring eRe is weakly f -clean (Lemma
2.13). A left quasi-duo ring R is weakly clean if and only if R isa weakly f -
clean ring (Theorem 2.17). Finally, we showed that the ring of skew Hurwitz
series T = (HR,α) where α is an automorphism of R is weakly f -clean if
and only if R is weakly f -clean (Theorem 2.23).

2. Main results

We start our work with the following definition.

Definition 2.1. An element f ∈ R is said to be a full element if there exist
x, y ∈ R such that xfy = 1. The set of all full elements of a ring R will be
denoted by K(R). Obviously, invertible elements and one-sided invertible
elements are all in K(R) [14].

Definition 2.2. An element in R is said to be f -clean if it can be written
as the sum of an idempotent and a full element. A ring R is called a f -clean
ring if each element in R is a f -clean element [14].

In the following, we define the weakly f -clean rings. Then we study
some of the basic properties of weakly f -clean rings. Moreover, we give
some necessarily examples.

Definition 2.3. Let R be a ring. Then an element r ∈ R is called weakly
f -clean if there exist f ∈ K(R) and e ∈ Id(R) of R such that r = f + e or
r = f − e. A ring R is called weakly f -clean if every element of R is weakly
f -clean.

Example 2.4. Every clean, weakly clean or f -clean ring is weakly f -clean.
Since every purely infinite simple ring is a f -clean ring, and so is weakly
f -clean [14]. (Z8,+, .) is a weakly f -clean ring, but (Z,+, .) is not a weakly
f -clean ring.

A weakly f -clean ring is not f -clean, in general.

Example 2.5. Let p and q be two distinct odd primes. Then the ring

Z(p) ∩ Z(q) =
{r
s
| r, s ∈ Z, s 6= 0, p - s, q - s

}
is a weakly f -clean ring that is not f -clean.
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Proposition 2.6. Let R be a ring and r ∈ R. Then r is weakly f -clean if
and only if −r weakly f -clean.

Proof. Suppose that r is weakly f -clean. Hence r = f + e or r = f − e for
some f ∈ K(R) and e ∈ Id(R). Then −r = −f − e or −r = −f + e. Since
−f ∈ K(R), −r weakly f -clean.

Proposition 2.7. Let R be a ring and every idempotent of R is central.
Then r ∈ R is weakly f -clean if and only if 1−r or 1+r is f -clean.

Proof. Suppose r is weakly f -clean. Hence r = f + e or r = f − e for some
f ∈ K(R) and e ∈ Id(R). Then 1− r = −f +(1− e) or 1+ r = f +(1− e),
and so 1 − r or 1 + r is f -clean. Conversely, assume that 1 − r or 1 + r
is f -clean. Hence 1 − r = f + e or 1 + r = f + e for some f ∈ K(R) and
e ∈ Id(R). Then r = −f + (1 − e) or r = f − (1 − e), thus r is weakly
f -clean.

Lemma 2.8.

(i) Every homomorphic image of a weakly f -clean ring is weakly f -clean.

(ii) Let {Ri}i∈I be a family of rings. Then
∏

i∈I Ri is weakly f -clean if
and only if every Ri is weakly f -clean.

Proof. (i). Is clear.
(ii). Suppose that every Ri is weakly f -clean and r = (ri) ∈ R. Hence
ri = fi + ei or ri = fi − ei for some fi ∈ K(Ri) and ei ∈ Id(Ri). Then
r = f + e such that f = (fi) ∈ K(R) and e = (ei) ∈ Id(R), and so R is
weakly f -clean. The converse follows from (i).

Let I be an ideal of a ring R. We say that idempotents of R are lifted
modulo I if, for given r ∈ R with r − r2 ∈ I, there exists e ∈ Id(R) such
that e− r ∈ Id(R) [15].

Lemma 2.9. Let R be a ring such that idempotents are lifted modulo J(R).
Then R is weakly f -clean if and only if R/J(R) is weakly f -clean.

Proof. Suppose that R is weakly f -clean. Hence R/J(R) is weakly f -clean,
by Lemma 2.8. Conversely, assume that R/J(R) is weakly f -clean and
r ∈ R. Hence r+J(R) = (f+J(R))+(e+J(R)) or r+J(R) = (f+J(R))−
(e+J(R)) with e2−e ∈ J(R) and (x+J(R))(f+J(R))(y+J(R)) = 1+J(R)
for some x, y ∈ R. Since idempotents can be lifted modulo J(R), e is an
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idempotent and r = f + b + e or r = f + b − e for some b ∈ J(R). Since
(x+J(R))(f+J(R))(y+J(R)) = 1+J(R), xfy = 1+z ∈ 1+J(R) ⊆ U(R)
for some z ∈ J(R). Therefore, there exist x1, y1 ∈ R such that x1fy1 = 1.
Hence x1(f+b)y1 = 1+x1by1 ∈ 1+J(R) ⊆ U(R). Thus x1(f+b)y1u−1 = 1
for some u ∈ U(R), and so f + b ∈ K(R). Then R is weakly f -clean.

Lemma 2.10. Let R be a ring. Then R is weakly f -clean if and only if for
every r ∈ R there exist g ∈ Id(R) and f ∈ K(R) such that gr = gf and
(g−1)(r−1) = (g−1)f or gr = gf and (g−1)(r−1) = (g−1)f+2(1−g).

Proof. Suppose that R is weakly f -clean and r ∈ R. Hence r = f + e or
r = f−e for some e ∈ Id(R) and f ∈ K(R). Assume g = 1−e. If r = f+e,
then gr = g(f + e) = gf and (g − 1)(r − 1) = (g − 1)f . If r = f − e, then
gr = g(f + e) = gf and (g − 1)(r − 1) = (g − 1)f + 2(1 − g). Conversely,
assume that for every r ∈ R there exist g ∈ Id(R) and f ∈ K(R) such that
gr = gf and (g − 1)(r − 1) = (g − 1)f . Then gf − f = gr − g − r + 1,
and so r = f + (1 − g). If for every r ∈ R there exist g ∈ Id(R) and
f ∈ K(R) such that gr = gf and (g− 1)(r− 1) = (g− 1)f +2(1− g), then
gf − f + 2(1− g) = gr − g − r + 1, and so r = f − (1− g). Therefore R is
weakly f -clean.

Each polynomial ring over a nonzero commutative ring is not weakly
clean [1, Theorem 1.9]. If R is commutative ring, then U(R) = K(R), R
is weakly clean if and only if R is weakly f -clean. Hence each polynomial
ring over a nonzero commutative ring is not weakly f -clean.

Lemma 2.11. Let R be a ring such that idempotents are lifted modulo J(R)
and R[α] = R+Rα+ · · ·+Rαn with αn+1 = 0. Then R is weakly f -clean
if and only if R[α] is weakly f -clean.

Proof. Suppose that R is weakly f -clean. Since J(R[α]) = J(R) + 〈α〉,

R[α]/J(R[α]) ∼= R/J(R).

Then R[α]/J(R[α]) is weakly f -clean, by Lemma 2.9. Since idempotents
can be lifted modulo J(R[α]), R[α] is weakly f -clean, by Lemma 2.9.
Conversely, suppose that R[α] is weakly f -clean. Since R[α]/J(R[α]) ∼=
R/J(R), R/J(R) is weakly f -clean. Since idempotents can be lifted mod-
ulo J(R), R is weakly f -clean, by Lemma 2.9.

Proposition 2.12. Let R be a ring and e ∈ Id(R) such that r ∈ eRe is
weakly f -clean in eRe. Then r is weakly f -clean in R.
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Proof. Suppose r ∈ eRe is weakly f -clean in eRe. Hence r = f + g or
f − g for some g ∈ Id(eRe) and f ∈ K(eRe), and so there exist x, y ∈ eRe
such that xfy = e. If r = f + g, then (x − (1 − e))(f − (1 − e))(y +
(1 − e)) = (xfy + (1 − e)) = 1, and so f − (1 − e) ∈ K(R). It is clear
that g + (1 − e) ∈ Id(R). Hence r = (f − (1 − e)) + (g + (1 − e)). If
r = f − g, then (x+(1− e))(f +(1− e))(y+(1− e)) = (xfy+(1− e)) = 1,
and so f + (1 − e) ∈ K(R). It is clear that g + (1 − e) ∈ Id(R). Hence
r = (f + (1− e))− (g + (1− e)). Therefore r is weakly f -clean in R.

Lemma 2.13. Let R be a weakly f -clean ring and e ∈ R be a central
idempotent. Then the corner ring eRe is weakly f -clean.

Proof. Assume that R is a weakly f -clean ring and e ∈ R is a central
idempotent. Hence eRe is homomorphic image of R. Then eRe is weakly
f -clean, by Lemma 2.8.

Let R be a ring and RMR be an R-R-bimodule which is a ring possibly
without a unity in which (mn)r = m(nr), (mr)n = m(rn) and (rm)n =
r(mn) held for all m,n ∈ M and r ∈ R. The ideal extension of R by
M is defined to be the additive abelian group I(R,M) = R ⊕ M with
multiplication (r,m)(s, n) = (rs, rn+ms+mn).

Lemma 2.14. Let R be a weakly f -clean and RMR be an R-R-bimodule
such that for any m ∈ M , there exists n ∈ M such that m + n + nm = 0.
Then the ideal-extension I(R,M) of R by M is weakly f -clean.

Proof. Suppose that (r,m) ∈ I(R,M). Hence r = f + e or r = f − e for
some e ∈ Id(R) and f ∈ K(R). Then (r,m) = (f,m) + (e, 0) or (r,m) =
(f,m)− (e, 0). It is clear that (e, 0) ∈ Id(I(R,M)). Assume that xfy = 1.
Hence xmy ∈M , and so there exists n ∈M such that xmy+n+nxmy = 0.
Then (x, nx)(f,m)(y, 0) = 1, and so (f,m) ∈ K(Id(I(R,M)). Therefore
Id(I(R,M) is weakly f -clean.

Let R be a ring and σ be a ring endomorphism of R. Then the skew
power series ring R[[x;σ]] of R is the ring obtained by giving the formal
power series ring over R with the new multiplication xr = σ(r)x for all
a ∈ R. In particular, R[[x]] = R[[x; 1R]].

Lemma 2.15. Let R be a ring and σ be a ring endomorphism of R. Then
the following statements are equivalent.

(i) R is a weakly f -clean ring.
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(ii) The formal power series ring R[[x]] of R is a weakly f -clean ring.

(iii) The skew power series ring R[[x;σ]] of R is a weakly f -clean ring.

Proof. (ii) ⇒ (i). Suppose R[[x]] is a weakly f -clean ring. Since R is a
homomorphic image of R[[x]], R is weakly f -clean, by Lemma 2.8.
(iii) ⇒ (i). Suppose R[[x;σ]] is a weakly f -clean ring. Since R is a homo-
morphic image of R[[x;σ]], R is weakly f -clean, by Lemma 2.8.
(i) ⇒ (iii). Suppose R is a weakly f -clean ring and g = r0 + r1x + · · · ∈
R[[x;σ]]. Then r0 = f0 + e0 or r0 = f0 − e0 for some f0 ∈ K(R) and
e0 ∈ Id(R). If r0 = f0 + e0 and g′ = g − e0 = f0 + r1x + · · · such
that x0f0y0 = 1 for some x0, y0 ∈ R, then u = (x0 + · · · )g′(y0 + · · · ) =
1+x0r1σ(y0)x+ · · · ∈ U(R[[x;σ]]). Hence g′ ∈ K(R[[x;σ]]), and g = g′+e0
with e0 ∈ Id(R[[x;σ]]). If r0 = f0 − e0 and g′ = g + e0 = f0 + r1x + · · ·
such that x0f0y0 = 1 for some x0, y0 ∈ R, then u = (x0+ · · · )g′(y0+ · · · ) =
1+x0r1σ(y0)x+ · · · ∈ U(R[[x;σ]]). Hence g′ ∈ K(R[[x;σ]]), and g = g′−e0
with e0 ∈ Id(R[[x;σ]]). Therefore R[[x;σ]] is weakly f -clean.
(i) ⇒ (ii). Suppose R is a weakly f -clean ring. Since R[[x]] = R[[x; 1R]],
the proof is similar to (i) =⇒ (iii).

Theorem 2.16. Let R be a ring and r ∈ R is a weakly f -clean element.

Then B =

(
r s
0 0

)
is a weakly f -clean element in M2(R) for every s ∈ R.

Proof. Suppose r ∈ R is a weakly f -clean element. Then r = f + e or
r = f − e for some f ∈ K(R) and e ∈ Id(R). Hence xfy = 1 for some
x, y ∈ R. If r = f + e, then

B =

(
e 0
0 1

)
+

(
f y
0 −1

)
,

such that
(
e 0
0 1

)
∈ Id(M2(R)) and

(
f y
0 −1

)
∈ K(M2(R)), by [14, Propo-

sition 2.6]. If r = f − e, then

B =

(
f s
0 1

)
−
(
e 0
0 0

)
.

such that
(
e 0
0 0

)
∈ Id(M2(R)) and(
x 0
0 1

)(
f s
0 1

)(
y −1
0 1

)
=

(
1 0
0 1

)
,
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and so
(
f s
0 1

)
∈ K(M2(R)). Therefore B =

(
r s
0 0

)
is a weakly f -clean

element in M2(R) for every s ∈ R.

A ring R is said to be left quasi-duo, if every maximal left ideal of R
is a two-sided ideal. Commutative rings, local rings, rings in which every
nonunit has a power that is central are all belong to this class of rings [17]
. A ring R is said to be Dedekind finite if rs = 1 always implies sr = 1 for
any r, s ∈ R.

Theorem 2.17. Let R be a left quasi-duo ring. Then the following state-
ments are equivalent.

(i) R is a weakly clean ring.

(ii) R is a weakly f -clean ring.

Proof. (i)⇒ (ii). Is clear.
(ii) ⇒ (i). Suppose R is a weakly f -clean ring. Since R is a left quasi-
duo ring, K(R) ⊆ U(R), by [14, Theorem 2.9]. Hence R is a weakly clean
ring.

Corollary 2.18. Let R be a commutative (local or Dedekind finite) ring.
Then R is weakly clean if and only if R is weakly f -clean.

Proof. Since every commutative (local or Dedekind finite) ring is a left
quasi-duo ring, the assertion holds, by Theorem 2.17.

Corollary 2.19. Let R be a ring in which every nonunit has a power that
is central. Then R is weakly clean if and only if R is weakly f -clean.

Proof. Suppose every nonunit has a power that is central. Hence R is a left
quasi-duo ring. Then the assertion holds, by Theorem 2.17.

Corollary 2.20. Let R be a ring in which all idempotents are central. Then
R is weakly clean if and only if R is weakly f -clean.

Proof. Since all idempotents are central, R is Dedekind finite. Hence the
assertion holds, by Corollary 2.18.

If G is a group and R is a ring, we denote the group ring over R by RG.

Lemma 2.21. Let R be a ring such that 2 ∈ U(R). Then R is weakly
f -clean if and only if RG is weakly f -clean.
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Proof. Suppose RG is weakly f -clean. Since R is a homomorphic image
of RG, R is weakly f -clean, by Lemma 2.8. Conversely, since 2 ∈ U(R),
RG ∼= R × R, by [11, Proposition 3]. Hence RG is weakly f -clean by
Lemma 2.8.

Suppose that R is an associative ring with unity and α : R −→ R is
an endomorphism such that α(1). The ring (HR,α) of skew Hurwitz series
over a ring R is defined as follows: the elements of (HR,α) are functions
f : N −→ R, where N is the set of integers greater or equal than zero. The
operation of addition in (HR,α) is componentwise and the operation of
multiplication is defined, for every f, g ∈ (HR,α), by:

fg(n) =
∑n

k=0

(
n
k

)
f(k)αk(g(n− k)) for each n ∈ N,

where
(
n
k

)
is the binomial coefficient defined for all n, k ∈ N with n > k

by n!/k!(n − k)!. In the case where the endomorphism α is the identity,
we denote HR instead of (HR,α). If one identifies a skew formal power
series

∑∞
n=0 ∈ R[[x;α]] with the function f such that f(n) = an, then

multiplication in (HR,α) is similar to the usual product of skew formal
power series, except that binomial coefficients appear in each term in the
product introduced above. It can be easily shown that T is a ring with
identity h1, defined by h1(0) = 1 and h1(n) = 0 for all n > 1. It is clear
that R is canonically embedded as a subring of (HR,α) via r ∈ R 7−→ hr ∈
(HR,α), where hr(0) = r, hr(n) = 0 for every n > 1 [4, 11].

Proposition 2.22. Let R be a ring. Then f ∈ K(T = (HR,α)) if and
only if f(0) ∈ K(R).

Proof. [12, Proposition 2.11].

Theorem 2.23. Let R be a ring and α be an automorphism of R. Then
T = (HR,α) is weakly f -clean if and only if R is weakly f -clean.

Proof. Suppose thatW = {h ∈ T | h(0) = 0}, where T = (HR,α) is weakly
f -clean. Hence R ∼= T/W , and so R is a homomorphic image of T . Then
R is weakly f -clean, by Lemm 2.8. Conversely, asuume that R is weakly
f -clean and h ∈ T . Hence h(0) ∈ R, and so h(0) = f + e or h(0) = f − e
for some e ∈ Id(R) and f ∈ K(R). Define an element g ∈ T by,

g(n) =

{
f n = 0

h(n) n > 0.
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Then h = g + he or h = g − he, where g ∈ K(T ) and he ∈ Id(T ). Then
T = (HR,α) is weakly f -clean.

Here we shall formulate two questions of interest.

Problem 2.24. When is a matrix ring weakly f -clean?

Problem 2.25. Let R be a ring and e ∈ Id(R) such that the subring eRe
is weakly f -clean. Is R also weakly f -clean?
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References
[1] M.Y. Ahn, D.D. Anderson, Weakly clean rings and almost clean rings,

Rocky Mountain J. Math., 36 (2006), 783− 799.

[2] D.D. Anderson, V.P. Camillo, Commutative rings whose elements are a
sum of a unit and an idempotent, Comm. Algebra, 30 (2002), 3327− 3336.

[3] N. Ashrafi, E. Nasibi, r-clean rings, Math. Reports, 15(65) (2013), 125−
132.

[4] A. Benhissi, F. Koja, Basic properties of Hurwitz series rings, Ricerche
Math., 61 (2012), 255− 273.

[5] A.Y.M. Chin, K.T. Qua A note on weakly clean rings, Acta Math. Hun-
gar., 132 (2001), 113− 116.

[6] V.P. Camillo, H.P. Yu, Exchange rings, unit and idempotents Commun.
Algebra, 22 (1994), 4737− 4749.

[7] P.V. Danchev, On weakly clean and weakly exchange rings having the strong
property, Publ. Inst. Math. (Beograd), 101 (2017), 135− 142.

[8] P.D. Danchev, On weakly clean and weakly exchange rings having the strong
property, Publ. Inst. Math. (Beograd), 101 (2017), 135− 142.

[9] P.V. Danchev, Weakly clean and exchange UNI rings, Ukrain. Math. J., 71
(2019), 1617− 1623.

[10] P.V. Danchev, Weakly exchange rings whose units are sums of two idempo-
tents, Vestnik St. Petersburg Univ., Math., Mekh., 6(64) (2019), 265− 269.



118 F. Rashedi

[11] A.M. Hassanein, Clean rings of skew Hurwitz series, Matematiche (Cata-
nia), 62 (2007), 47− 54.

[12] A.L. Handam, On f-clean rings and full elements, Prayecciones J. Math.,
30 (2011), 277− 284.

[13] T. Kosan, S. Sahinkaya, Y. Zhou, On weakly clean rings, Comm. Algebra,
45 (2017), 3494− 3502.

[14] B. Li, L. Feng, f-clean rings and rings having full elements J. Korean Math.
Soc., 47 (2010), 247− 261.

[15] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer.
Math. Soc., 229 (1977), 269− 278.

[16] F. Rashedi, Invo-k-clean rings, Bull. Transilvania Univ. Brašov, Math. Com-
puter Sci., 2(64) (2022), 167− 172.

[17] H. Yu, On quasi-duo rings, Glasgow Math. J., 37 (1995), 21− 31.

Received July 09, 2023
Department of Mathematics, Technical and Vocational University, Tehran, Iran
E-mail: frashedi@tvu.ac.ir



Quasigroups and Related Systems 32 (2024), 119− 128

https://doi.org/10.56415/qrs.v32.10

Generalized essential ideals in R-groups

Tapatee Sahoo, Syam Prasad Kuncham, Babushri Srinivas Kedukodi,

Harikrishnan Panackal

Abstract. In this paper, we consider an R-group where R is a zero-symmetric right
nearring. We define generalized essential ideal of an R-group and prove several properties.
Further, we extend this notion to obtain a one-one correspondence between s-essential
ideals of R-group and those of Mn(R)-group Rn.

1. Preliminaries

The concept of uniform dimension in modules over rings is a generalization
of the dimension of a vector space over a field. A module in which every
non-zero submodule is essential is called uniform. Uniform submodules play
a significant role to establish various finite dimension conditions in modules
over associative rings. Goldie [11] characterized equivalent conditions for
a module to have finite uniform dimension. In Bhavanari [20], uniform
dimension was generalized to modules over nearrings (also known as, R-
groups) and proved a characterization for a R-group to have finite Goldie
dimension (in short, f.G.d.). Goldie dimension aspects in modules over
nearrings were extensively studied by [5, 7, 20]. In case of a module over a
matrix nearring, the notions essential ideal, uniform ideal were defined in
[6], and proved a characterization for a module over a matrix nearring to
have a f.G.d.. In [10], the authors studied prime and semiprime aspects in
connection with f.G.d. in R-groups and matrix nearrings.

In section 2, we introduce generalized essential ideal in R-groups and
prove some properties. In section 3, we extend the notion of generalized
essential ideal to modules over matrix nearrings and obtain a one-one cor-
respondence between s-essential ideals of an R-group (over itself) and those
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of Mn(N)-group Rn.
A (right) nearring (R,+, ·) is an algebraic system (Pilz [18]), where R

is an additive group (need not be abelian), and a multiplicative semigroup,
satisfying only one distributive axioms (say, right): (n1 + n2)n3 = n1n3 +
n2n3 for all n1, n2, n3 ∈ R. If R is a right nearring, then 0a = 0 and
(−a)b = −ab, for all a, b ∈ R, but in general, a0 6= 0 for some a ∈ R. R is
zero-symmetric (denoted as, R = R0) if a0 = 0 for all a ∈ R. An additive
group (G,+) is called an R-group (or module over a nearring R), denoted
by RG (or simply by G) if there exists a mapping R × G → G (image
(n, g) → ng), satisfying: (n + m)g = ng + mg; (nm)g = n(mg) for all
g ∈ G and n, m ∈ R. It is evident that every nearring is an R-group (over
itself). Also, if R is a ring, then each (left) module over R is an R-group.
Throughout, G denotes an R-group where R is a right nearring.

A subgroup (H,+) of G with RH ⊆ H is called an R-subgroup of
G. A normal subgroup H of G is called an ideal if n(g + h) − ng ∈ H
for all n ∈ R, h ∈ H, g ∈ G. For any two R-groups G1 and G2, a map
f : G1 → G2 is called an R-homomorphism, f(x + y) = f(x) + f(y) and
f(nx) = nf(x) hold for all x, y ∈ G1 and n ∈ R. If f is one-one and onto,
then f is an R-isomorphism.

In case of a zero symmetric nearring, for any ideals A and B of G, A+B
is an ideal of G ([18], Corollary 2.3). For each g ∈ G, Rg is an R-subgroup
of G. The ideal (or R-subgroup) generated by an element g ∈ G is denoted
by 〈g〉.
An ideal H of an R-group G is essential (see, [20]), if for any ideal K of
G, H ∩K = (0) implies K = (0). If every ideal (0) 6= H of G is essential
then we say G is uniform. An ideal (R-subgroup) S of G is said to be
superfluous ideal (see, [2, 3]), if S + K = G and K is an ideal of G, imply
K = G and G is called hollow if every proper ideal of G is superfluous in
G. Generalizations of essential ideals, prime ideals, superfluous ideals in
R-groups, matrix nearrings, and hyperstructures were extensively studied
in [13, 14, 17, 19, 21, 22, 23, 24, 25].

For standard definitions and notations in nearrings, we refer to [8, 18].

2. Generalized essential ideals

Definition 2.1. Let K be an R-ideal (or R-subgroup) of G. K is said to
be s-essential in G (denoted by K Es G) if for any superfluous R-ideal (or
R-subgroup) L of G, K ∩ L = (0) implies L = (0).
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Note 2.2. Every essential R-ideal of G is s-essential in G.

Remark 2.3. Converse of Note 2.2 need not be true. Let R = Z and
G = Z6. Then K1 = {0̄, 3̄} and K2 = {0̄, 2̄, 4̄} are the R-ideals of G. Then
K2 is s-essential but not essential, since K2 ∩K1 = (0̄). but K1 6= (0̄).

Example 2.4. Consider the nearring with addition and multiplication ta-
bles listed in K(135) and K(139) of p.418 of Pilz [18]. Let G = D8 =〈
{a, b | 4a = 2b = 0, a+b = b−a}

〉
= {a, 2a, 3a, 4a = 0, b, a+b, 2a+b, 3a+b},

where a is the rotation in an anti-clockwise direction about the origin
through π

2 radians and b is the reflection about the line of symmetry, and
G = R. Then G is an R-group. Consider the operations:

+ 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 a 2a 3a b a+ b 2a+ b 3a+ b
a a 2a 3a 0 a+ b 2a+ b 3a+ b b
2a 2a 3a 0 a 2a+ b 3a+ b b a+ b
3a 3a 0 a 2a 3a+ b b a+ b 2a+ b
b b 3a+ b 2a+ b a+ b 0 3a 2a a

a+ b a+ b b 3a+ b 2a+ b a 0 3a 2a
2a+ b 2a+ b a+ b b 3a+ b 2a a 0 3a
3a+ b 3a+ b 2a+ b a+ b b 3a 2a a 0

∗1 0 a 2a 3a b a+ b 2a+ b 3a+ b

0 0 0 0 0 0 0 0 0
a 0 a 2a 3a b a+ b 2a+ b 3a+ b
2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a a b a+ b 2a+ b 3a+ b
b 0 b 2a 2a+ b b a+ b 2a+ b 3a+ b

a+ b 0 a+ b 0 a+ b 0 0 0 0
2a+ b 0 2a+ b 2a b b 0 2a+ b 3a+ b
3a+ b 0 3a+ b 0 3a+ b 0 0 0 0

The proper ideals are I1 = {0, 2a}, I2 = {0, a + b, 2a, 3a + b}, and R-
subgroups are J1 = {0, 2a}, J2 = {0, b}, J3 = {0, a + b}, J4 = {0, 2a + b},
J5 = {0, 3a+ b}, J6 = {0, b, 2a, 2a+ b}, J7 = {0, 2a, a+ b, 3a+ b}. Then J1
is s-essential but not essential, as J1 ∩ J3 = (0), whereas J3 6= (0).
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Proposition 2.5. Let G be a unitary R-group and (0) 6= K be an R-
subgroup of G. Then K EsG if and only if for each 0 6= x ∈ G, if Rx� G,
then there exists an element n ∈ R such that 0 6= nx ∈ K.

Proof. Let (0) 6= K be an R-subgroup of G such that K Es G. For each
0 6= x ∈ G, if Rx � G, then since 1 ∈ R and x 6= 0, we have Rx 6= (0).
Clearly, Rx is a R-subgroup of G. Since K Es G, we get K ∩ Rx 6= (0).
Then there exists 0 6= a ∈ K ∩ Rx. Since a ∈ Rx, there exists n ∈ R
such that a = nx. Therefore, 0 6= nx ∈ K. Conversely, suppose that L be
an R-subgroup of G such that (0) 6= L � G. Then 0 6= x ∈ L ⊆ G. To
show Rx � G, let T be an R-subgroup of G such that Rx + T = G. Now
Rx ⊆ RL ⊆ L. Thus, G = Rx + T ⊆ L + T . So L + T = G. Now L � G
implies T = G. Therefore, Rx � G. Then by hypothesis, there exists an
element n ∈ R such that 0 6= nx ∈ K. Hence 0 6= nx ∈ K ∩ L, and so
K ∩ L 6= (0). Therefore, K Es G.

Proposition 2.6. Let K,L, T be R-ideals of G with K ⊆ T . If K Es G,
then K Es T and T Es G.

Proof. Suppose that K be an R-ideal of G with K∩P = (0), where P � T .
To show P � G, let M be an R-ideal of G such that P + M = G. Then
(P+M)∩T = G∩T . Now by modular law, P+(M∩T ) = T . Since P � T ,
we get M ∩ T = T . This implies M ⊆ T . Thus, G = P + M ⊆ T = T .
Therefore, T = G. Hence P � G. Since K Es G, we have P = (0). Thus
K Es T . Now to show T Es G, let Q � G such that T ∩ Q = (0). Since
K ⊆ T , we have K ∩ Q ⊆ T ∩ Q = (0). Then by hypothesis, Q = (0).
Therefore T Es G.

Remark 2.7. The converse of Proposition 2.6 need not be true. Let R = Z
and G = Z36. K = 6Z36 and L = 18Z36 are R-ideals of G. Now L Es K
and K Es G. But L 5s G, since L ∩ 12Z36 = (0), but 12Z36 6= (0).

Proposition 2.8. Let K and L be R-ideals of G. Then K ∩LEs G if and
only if K Es G and LEs G.

Proof. Let K ∩LEsG. To show KEsG, let P � G such that K ∩P = (0).
Now, (K∩L)∩P ⊆ K∩P = (0). Since K∩LEsG, we have P = (0). Thus
K Es G. Similarly, LEs G. Conversely, suppose that K Es G and LEs G.
Let P � G such that (K ∩L)∩P = (0). Then K ∩ (L∩P ) = (0). Now we
show that K ∩P � G. Let T be a R-ideal of G such that (K ∩P )+T = G.
Since K ∩ P ⊆ P , we have G = (K ∩ P ) + T ⊆ P + T . Now P � G,
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implies T = G. Thus K ∩ P � G. Now, L Es G and K ∩ P � G, implies
K ∩ P = (0). Also K Es G and P � G implies P = (0). Therefore,
K ∩ LEs G.

Proposition 2.9. Let f : G→ G′ be an N -epimorphism. If K Es G
′, then

f−1(K) Es G.

Proof. Let L� G such that f−1(K)∩L = (0). To show thatK∩f(L) = (0),
let x ∈ K ∩ f(L). Then x ∈ K and x ∈ f(L). This implies x = f(y), for
some y ∈ L. Then y = f−1(x) ∈ f−1(K) and y ∈ L. Thus y ∈ f−1(K)∩L =
(0), and so y = 0. Hence x = f(0) = 0. Therefore, K ∩ f(L) = (0).
Now we show that f(L) � G′. Let T be an N -ideal of G′ such that
f(L)+T = G′. Then L+f−1(T ) = f−1(G′) = G. This implies f−1(T ) = G,
and so T = f(G) = G′. Therefore, f(L) � G′. Now since K Es G2 and
K ∩f(L) = (0), we get f(L) = (0). Hence L ⊆ f−1(0) ⊆ f−1(K)∩L = (0).
Therefore, L = (0).

Theorem 2.10. Suppose that K1 ≤R G1 ≤R G, K2 ≤R G2 ≤R G, and
G = G1 ⊕ G2; then K1 ⊕ K2 Es G1 ⊕ G2 if and only if K1 Es G1 and
K2 Es G2.

Proof. Suppose that K1 Es G1. That is, K1 ∩ L1 = (0), for some (0) 6=
L1 � G1. We show that (K1 + K2) ∩ L1 = (0). Let x ∈ (K1 + K2) ∩ L1.
Then x = k1 + k2 and x = l1, where k1 ∈ K1, k2 ∈ K2. This implies
l1 = k1 + k2, and so k2 = −k1 + l1 ∈ G1 ∩ G2 = (0). Therefore, k2 = (0).
Hence l1 = k1 ∈ K1 ∩ L1 = (0). Therefore, x = 0. This shows that
(K1 + K2) ∩ L1 = (0). Now to show L1 � G1 + G2, let T ER G1 + G2

such that L1 + T = G1 + G2. Then (L1 + T ) ∩ G1 = (G1 + G2) ∩ G1.
Now by modular law, since L1 ⊆ G1, we get L1 + (T1 ∩ G1) = G1. Since
L1 � G1 and T ∩G1 ER G1, we have T ∩G1 = G1, and so G1 ⊆ T . Thus,
G1 +G2 = L1 + T ⊆ G1 + T = T . Therefore, T = G1 +G2 shows that

L1 � G1 +G2 · · · (∗).
Now K1 ⊕K2 Es G1 ⊕ G2 implies L = (0), a contradiction. Therefore

K1 Es G1. In a similar way, it can be proved that K2 Es G2. Conversely,
suppose that Ki Es Gi and 0 6= gi ∈ Gi (i = 1, 2). Then by Proposition 2.5
and by (∗) we have Rgi � G1 +G2. Then by Proposition 2.5, there exists
r1 ∈ R such that 0 6= r1g1 ∈ K1. If r1g2 ∈ K2, then 0 6= r1g1 + r1g2 ∈
K1⊕K2. If r1g2 /∈ K2, then again by Proposition 2.5, there exists an r2 ∈ R
with 0 6= r2r1g2 ∈ K2, and we have 0 6= r2r1g1 + r2r1g2 ∈ K1 ⊕K2. Then
K1 ⊕K2 Es G1 ⊕G2.
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3. Generalized essential ideals in Mn(R)-group Rn

For a zero-symmetric right nearring R with 1, let Rn will be the direct sum
of n copies of (R,+). The elements of Rn are column vectors and written as
(r1, · · · , rn). The symbols ij and πj respectively, denote the ith coordinate
injective and jth coordinate projective maps.
For an element a ∈ R, ii(a) = (0, · · · , a︸︷︷︸

ith

, · · · , 0), and πj(a1, · · · , an) = aj ,

for any (a1, · · · , an) ∈ Rn. The nearring of n× n matrices over R, denoted
by Mn(R), is defined to be the subnearring of M(Rn), generated by the set
of functions {faij : Rn → Rn | a ∈ R, 1 ≤ i, j ≤ n} where faij (k1, · · · , kn) :=
(l1, l2, · · · , ln) with li = akj and lp = 0 if p 6= i. Clearly, faij = iif

aπj , where
fa(x) = ax, for all a, x ∈ R. If R happens to be a ring, then faij corresponds
to the n× n-matrix with a in position (i, j) and zeros elsewhere.

Notation 3.1. ([6], Notation 1.1)
For any ideal A of Mn(R)-group Rn, we write

A∗∗ = {a ∈ R : a = πjA, for some A ∈ A, 1 ≤ j ≤ n}, an ideal of RR.

We denote Mn(R) for a matrix nearring, Rn for an Mn(R)-group Rn.
We refer to Meldrum & Van der Walt [16] for preliminary results on matrix
nearrings.

Theorem 3.2. (Theorem 1.4 of [6]) Suppose A ⊆ R.

1. If An is an ideal of Mn(R)R
n, then A = (An)??.

2. If A is an ideal of RR if and only if An is an ideal of Mn(R)R
n.

3. If A is an ideal of RR, then A = (An)??.

Lemma 3.3. (Lemma 1.5 of [6])

1. If I is an ideal of Mn(R)R
n, then (I??)n = I.

2. Every ideal I of Mn(R)R
n is of the form Kn for some ideal K of RR.

Remark 3.4. (Remark 1.6 of [6]) Suppose I, J are ideals of RR. Then

(i) (I ∩ J)n = In ∩ Jn;

(ii) I ∩ J = (0) if and only if (I ∩ J)n = (0̄) if and only if In ∩ Jn = (0̄).
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Lemma 3.5. If I and J are ideals of R, then (I + J)n = In + Jn.

Proof. Clearly, I ⊆ I + J and I ⊆ I + J which implies In ⊆ (I + J)n and
Jn ⊆ (I + J)n and so In + Jn ⊆ (I + J)n. To prove the other part, let
(x1, x2, · · · , xn) ∈ (I + J)n. Then xi ∈ I + J for every 1 ≤ i ≤ n which
implies xi = ai + bi, where ai ∈ I and bi ∈ J .
Now,

(x1, x2, · · · , xn) = (a1 + b1, a2 + b2, · · · , an + bn)

= (a1, a2, · · · , an) + (b1, b2, · · · , bn)

∈ In + Jn

Therefore, (I + J)n ⊆ In + Jn. Hence, (I + J)n = In + Jn.

Lemma 3.6. I + J = G if and only if (I + J)n = Gn if and only if
In + Jn = Gn.

Lemma 3.7. (Note 1.7(iii) of [6]) Let A be an ideal of RR. Then A ≤e RR
if and only if An ≤e Mn(R)R

n.

Definition 3.8. An ideal A of Mn(R)-group Rn is said to be superfluous
if for any ideal K of Rn, A+K = Rn implies K = Rn.

Definition 3.9. An ideal K of Mn(R)-group Rn is said to be s-essential if
for any ideal A of Rn, K ∩A = (0̄) and A � Rn implies K = (0̄).

Lemma 3.10. Let K be an ideal of RR. If KEs RR, then KnEs Mn(R)R
n.

Proof. Let KEs RR. To show KnEs Mn(R)R
n, let L be an ideal of Mn(R)R

n

such that Kn ∩ L = (0̄) and L � Mn(R)R
n. Now to show L?? � RR, let

B E RR such that L??+B = R. By Lemma 3.6, we have (L??+B)n = Rn.
By Lemma 3.5, we have (L??)n + Bn = Rn. Now by Lemma 3.3, we get
L = (L??)n, which implies L + Bn = Rn. Since Bn E Mn(R)R

n and L �
Mn(R)R

n, we have Bn = Rn. Let n ∈ R. Then (n, 0, · · · , 0) ∈ Rn = Bn.
Therefore, n ∈ (Bn)?? = B (by Theorem 3.2(3)). Therefore, B = R, and
so L?? � RR. So Kn ∩L = (0̄) implies Kn ∩ (L??)n = (0̄), and by Remark
3.4 (ii), K ∩ (L??) = (0). Now since K Es R, we get L?? = (0). Thus
L = (L??)n = (0̄). This shows that Kn Es Mn(R)R

n.

Lemma 3.11. Let A be an ideal of Mn(R)R. If AEs Mn(R)R
n, then A??Es

RR.
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Proof. Let A Es Mn(R)R
n. To show A?? Es RR, let B � RR such that

A?? ∩ B = (0). Then by Remark 3.4, we have (A??)n ∩ Bn = (0̄) and by
Lemma 3.3, we have A = (A??)n, and so A ∩ Bn = (0). Now to show
Bn � Mn(R)R

n, let L E Mn(R)R
n such that Bn + L = Rn. To show

L = Rn. Since L E Mn(R)R
n, by Lemma 3.3, we have L = (L??)n, which

implies Bn + (L??)n = Rn. Now using Lemma 3.5, we get (B + L??)n =
Rn. Therefore, by Lemma 3.6, B + L?? = R, and since B � RR, we get
L?? = R. Hence, L = (L??)n = Rn. This shows that Bn � Mn(R)R

n.
Now A Es Mn(R)R

n implies Bn = (0̄). Thus B = (0). This shows that
A?? Es RR.

Theorem 3.12. There is a one-one correspondence between the set of s-
essential ideals of RR and those of Mn(R)-group Rn.

Proof. Let P = {A E RR : AEsRR}. Q = {A E Mn(R)R
n : AEsMn(R)R

n}.
Define Φ : P → Q by Φ(A) = An. Then by Lemma 3.10, An Es Mn(R)R

n.
Define Ψ : Q → P by Ψ(A) = A??. By Lemma 3.11, A?? Es RR. Now
(Ψ ◦ Φ)(A) = Ψ(Φ(A)) = Ψ(An) = (An)?? = A. (Φ ◦Ψ)(A) = Φ(Ψ(A)) =
Φ(A??) = (A??)n = A. Therefore, (Ψ ◦ Φ) = IdP and (Φ ◦Ψ) = IdQ.
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On primary ordered semigroups

Pisan Summaprab

Abstract. In this paper, left primary, right primary, primary and semiprimary ideals
of ordered semigroups are introduced. Moreover, we introduce an ordered semigroups in
which every ideal is primary and every ideal is semiprimary which is a generalization of
primary and semiprimary semigroups.

1. Introduction and preliminaries
A primary semigroup was introduced and studied by M. Satyanarayana in [10] and some
results from [10] were extended to semiprimary semigroups by H. Lal [8]. Their study
was restricted to commutative semigroups. The concepts of primary and semiprimary
semigroups pass to noncommutative semigroups by A. Anjaneyulu [1, 2]. In [2], a class of
semigroups knows as pseudo symmetric semigroups, which includes the classes of commu-
tative, narmal, idempotent, duo semigroups was introduced. In this paper, the notions
of primary and semiprimary semigroups extended to ordered semigroups. We intro-
duce left primary, right primary, primary and semiprimary ideals of ordered semigroups
and also a class of ordered semigroups, namely pseudo symmetric ordered semigroups,
which includes the classes of commutative, narmal, idempotent, duo ordered semigroups.
Moreover, we study the connection between prime and semiprime ideals of an ordered
semigroups.

We recall some certain definitions and results used throughout this paper. A semi-
group (S, ·) together with a partial oder 6 that is compatible with the semigroup oper-
ation, meaning that for any x, y, z in S, x 6 y implies zx 6 zy and xz 6 yz, is called
a partially ordered semigroup, or simply an ordered semigroup [4]. Under the trivial
relation, x 6 y if and only if x = y, it is observed that every semigroup is an ordered
semigroup.

Let (S, ·,6) be an ordered semigroup. For two nonempty subsets A, B of S, we write
AB for the set of all elements xy in S where x ∈ A and y ∈ B, and write (A] for the set
of all elements x in S such that x 6 a for some a in A, i.e.,

(A] = {x ∈ S | x 6 a for some a ∈ A}.

2010 Mathematics Subject Classification: 06F05
Keywords: ordered semigroup, primary, semiprimary, semisimple, semiprime ideal,
prime ideal
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In particular, we write Ax for A{x}, and xA for {x}A. It was shown in [5] that the
following hold: (1) A ⊆ (A]; (2) A ⊆ B ⇒ (A] ⊆ (B]; (3) (A](B] ⊆ (AB]; (4) (A ∪ B] =
(A] ∪ (B]; (5) ((A]] = (A].

Let (S, ·,6) be an ordered semigroup. A non-empty subset A of S is called a left
(respectively, right) ideal of S if it satisfies the following conditions:

(i) SA ⊆ A (respectively, AS ⊆ A);

(ii) A = (A], that is, for any x in A and y in S, y 6 x implies y ∈ A.

If A is both a left and a right ideal of S, then A is called a two-sided ideal, or simply an
ideal of S. It is known that the union or intersection of two ideals of S is an ideal of S.

An element a of an ordered semigroup (S, ·,6), the principal left (respectively, right,
two-sided) ideal generated by a is of the form L(a) = (a∪Sa] (respectively, R(a) = (a∪aS],
I(a) = (a ∪ Sa ∪ aS ∪ SaS]).

Let (S, ·,6) be an ordered semigroup. A left ideal A of S is said to be proper if
A ⊂ S. A proper right and two-sided ideals are defined similarly. If S does not contain
proper ideals then we call S simple. A proper ideal A of S is said to be maximal if for
any ideal B of S, if A ⊂ B ⊆ S, then B = S.

Let (S, ·,6) be an ordered semigroup. An ideal I of S is said to be prime if for any
ideals A,B of S, AB ⊆ I implies A ⊆ I or B ⊆ I. An ideal I of S is said to be completely
prime if for any a, b ∈ S, ab ∈ I implies a ∈ I or b ∈ I. An ideal I of S is said to be
semiprime if for any ideal A of S, A2 ⊆ I implies A ⊆ I. An ideal I of S is said to be
completely semiprime if for any a ∈ S, an ∈ I for any positive integer n implies a ∈ I
[11].

An ideal A of an ordered semigroup (S, ·,6), the intersection of all prime ideals of
S containing A, will be denoted by Q∗(A) and the intersection of all completely prime
ideals of S containing A, will be denoted by P ∗(A).

A subset A of an ordered semigroup (S, ·,6), the radical of A, will be denoted by√
A defined by

√
A = {x ∈ S | xn ∈ A for some positive integer n } [3].

An element a of an ordered semigroup (S, ·,6) is called a semisimple element in S if
a ∈ (SaSaS]. And S is said to be semisimple if every element of S is semisimple [11].

An element a of an ordered semigroup (S, ·,6) is said to be left regular (respectively,
right regular, regular, intra-regular) if there exist x, y in S such that a 6 xa2 (respectively,
a 6 a2x, a 6 axa, a 6 xa2y) [11]. It is observed that left regular elements, right regular
elements, regular elements, and intra-regular elements are all semisimple.

A subset M of an ordered semigroup (S, ·,6) is called an m-system of S, if for any
a, b ∈ M , there exists x ∈ S such that (axb] ∩ M 6= ∅. A subset N of an ordered
semigroup (S, ·,6) is called an n-system of S, if for any a ∈ N , there exists x ∈ S such
that (axa] ∩N 6= ∅ [7].

An ordered semigroup (S, ·,6) is said to be a left(right) duo if every left(right) ideal
of S is a two-sided ideal of S. An ordered semigroup S is said to be a duo if it is both a
left duo and a right duo. An ordered semigroup S is said to be normal if (xS] = (Sx] for
all x ∈ S.

An element a of an ordered semigroup (S, ·,6) is called an ordered idempotent if
a 6 a2. We call an ordered semigroup S idempotent ordered semigroup if every element
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of S is an ordered idempotent [6]. The set of all ordered idempotents of an ordered
semigroup S denoted by E(S).

An element e of an ordered semigroup (S, ·,6) is called an identity element of S if
ex = x = xe for any x ∈ S. The zero element of S, defined by Birkhoff, is an element 0
of S such that 0 6 x and 0x = 0 = x0 for all x ∈ S.

2. Pseudo symmetric ordered semigroups
In this section, we introduce a class of ordered semigroups, namely pseudo symmetric
ordered semigroups, which includes the classes of commutative, narmal, idempotent, duo
ordered semigroups.

Definition 2.1. Let (S, ·,6) be an ordered semigroup. An ideal A of S is said to be
pseudo symmetric if xy ∈ A for some x, y ∈ S implies (xsy] ⊆ A for all s ∈ S.

Definition 2.2. An ordered semigroup (S, ·,6) is said to be pseudo symmetric if every
ideal of S is pseudo symmetric.

Example 2.3. Let (S, ·,6) be an ordered semigroup such that the multiplication and
the order relation are defined by:

· a b c

a a a a
b a a b
c a b b

≤ = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}.

The ideals of S are: {a}, {a, b} and S. As is easily seen, {a}, {a, b} and S, are pseudo
symmetric. So, it is pseudo symmetric ordered semigroup.

Remark 1. Every commutative and normal ordered semigroup is a pseudo symmetric
ordered semigroup.

Proposition 2.4. Every duo ordered semigroup is a pseudo symmetric ordered semi-
group.

Proof. Let (S, ·,6) be a duo ordered semigroup and A an ideal of S such that xy ∈ A
for some x, y ∈ S. Since S is duo, L(a) = R(a) for all a ∈ S. Let s ∈ S. We have
xs ∈ (xS ∪ x] = (Sx ∪ x]. Thus xs ∈ (Sx] or xs ∈ (x]. And each of the cases implies
(xsy] ⊆ A. Thus S is a pseudo symmetric.

Proposition 2.5. Every idempotent ordered semigroup is a pseudo symmetric ordered
semigroup.

Proof. Let (S, ·,6) be an idempotent ordered semigroup and A an ideal of S such that
xy ∈ A for some x, y ∈ S. Since S is an idempotent ordered semigroup, we have
yx 6 yxyx = y(xy)x ∈ A and also xsy 6 xsyxsy ∈ A for all s ∈ S. Thus S is a pseudo
symmetric.



132 P. Summaprab

Proposition 2.6. Let (S, ·,6) be a pseudo symmetric ordered semigroup and A an ideal
of S. Then A is prime if and only if A is completely prime.

Proof. Assume that A is prime. Let ab ∈ A for any a, b ∈ S. Since S is pseudo symmetric,
(asb] ⊆ A for all s ∈ S. It follows that (aSb] ⊆ A. Thus I(a)I(b) ⊆ A. Since A is prime,
we have I(a) ⊆ A or I(b) ⊆ A. Thus a ∈ A or b ∈ A, which shows that A is completely
prime. The converse statement is clear.

Lemma 2.7. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then Q∗(A) ⊆√
A.

Proof. Let x ∈ Q∗(A). If xn 6∈ A for all positive integer n. By Lemma 2.4 in [11], then
there exists a prime ideal P of S containing A such that xn 6∈ P for all positive integer
n. Thus x 6∈ Q∗(A). This is a contradiction. Thus Q∗(A) ⊆

√
A.

Theorem 2.8. Let (S, ·,6) be a pseudo symmetric ordered semigroup and A an ideal of
S. Then Q∗(A) =

√
A.

Proof. We have Q∗(A) ⊆
√
A by Lemma 2.7. If x 6∈ Q∗(A). Then there exists a prime

ideal P of S containing A such that x 6∈ P . We have P is a completely prime ideal by
Proposition 2.6. Thus xn 6∈ P for all positive integer n. It follows that xn 6∈ A for all
positive integer n. Thus x 6∈

√
A and so

√
A ⊆ Q∗(A). Hence Q∗(A) =

√
A.

3. Prime and semiprime ideals of ordered semigroups
In this section, we study the relation between prime and semiprime ideals of an ordered
semigroups.

Lemma 3.1. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is prime
if and only if for any a, b ∈ S, (aSb] ⊆ A implies a ∈ A or b ∈ A.

Proof. Assume that A is prime. Let (aSb] ⊆ A for any a, b ∈ S. Thus I(a)I(b) ⊆ A.
Since A is prime, we have a ∈ I(a) ⊆ A or b ∈ I(b) ⊆ A. Conversely, assume that for any
a, b ∈ S, (aSb] ⊆ A implies a ∈ A or b ∈ A. Let B,C be ideals of S such that BC ⊆ A.
If B 6⊆ A and C 6⊆ A, then there exists b ∈ B \ A and c ∈ C \ A. Thus (bSc] ⊆ A. It
follows that b ∈ A or c ∈ A. This is a contradiction. Thus B ⊆ A or C ⊆ A .

Similarly, we prove the following:

Lemma 3.2. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is
semiprime if and only if for any a ∈ S, (aSa] ⊆ A implies a ∈ A.

Proposition 3.3. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is
prime if and only if either S \A = ∅ or the set S \A is an m-system.

Proof. Assume that A is prime. If S \ A 6= ∅. Let a, b ∈ S \ A. Since A is a prime,
we have (aSb] 6⊆ A by Lemma 3.1. Then there exists y ∈ S such that ayb 6∈ A. Thus
ayb ∈ S \ A and so S \ A is an m-system. Conversely, assume that either S \ A = ∅ or
the set S \A is an m-system. Let a, b ∈ A such that (aSb] ⊆ A. If a, b 6∈ A. Since S \A
is an m-system, then there exists x ∈ S and c ∈ S \ A such that c 6 axb ∈ (aSb] ⊆ A.
This is a contradiction. Thus a ∈ A or b ∈ A.
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Similarly, we prove the following:

Proposition 3.4. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is
semiprime if and only if either S \A = ∅ or the set S \A is an n-system.

Proposition 3.5. Any semiprime ideal of an ordered semigroup (S, ·,6) is an intersec-
tion of prime ideals of S.

Proof. Let A be a semiprime ideal of S. If x 6∈ A, choose elements x1, x2, x3, ... inductively
as follows: x1 = x. Since (x1Sx1] = (xSx] 6⊆ A, take x2 ∈ S such that x2 ∈ (x1Sx1] and
x2 6∈ A. Since (x2Sx2] 6⊆ A, we have x3 ∈ S such that x3 ∈ (x2Sx2], x3 6∈ A, · · · , xi+1 ∈
(xiSxi], xi+1 6∈ A, · · · . We set B = {x1, x2, x3, · · · }. Let xi, xj ∈ B and i 6 j. Then
xj+1 ∈ (xiSxj ], xj+1 ∈ (xjSxi] and xj+1 ∈ B. Thus B is an m-system. Let T = {Q | Q
is an m-system of S, x ∈ Q and Q ∩ A = ∅ }. Then T 6= ∅. By Zorn’s Lemma, there
exists a maximal element in T , namely M . Let H = {J | J is an ideal of S, A ⊆ J and
J ∩M = ∅ }. Then H 6= ∅. By Zorn’s Lemma, there exists a maximal element in H,
namely I. Let a, b ∈ S \ I, then (I(a) ∪ I) ∩M 6= ∅ and (I(b) ∪ I) ∩M 6= ∅. Thus there
exists m1,m2 ∈ M such that m1 6 s1as2, m2 6 s3bs4, where s1, s2, s3, s4 ∈ S. Since
M is an m-system, then there exists m ∈ M such that m 6 m1zm2 for some z ∈ S.
We have m 6 s1as2zs3bs4 and so s1as2zs3bs4 6∈ I. It follows that as2zs3b 6∈ I. Thus
as2zs3b ∈ S \ I and so S \ I is an m-system. We have I is prime ideal of S containing A
by Proposition 3.3. Since x 6∈ I, x 6∈ Q∗(A). Thus Q∗(A) ⊆ A and so Q∗(A) = A.

Proposition 3.6. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is
semiprime if and only if Q∗(A) = A.

Proof. If A is semiprime, then Q∗(A) = A by Proposition 3.5. The converse statement
is obvious.

It is easy to see the following:

Lemma 3.7. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A is
completely prime if and only if S \A is a subsemigroups of S.

Proposition 3.8. Any completely semiprime ideal of an ordered semigroup (S, ·,6) is
an intersection of completely prime ideals of S.

Proof. Let A be completely semiprime ideal of S. If x 6∈ A, then xn 6∈ A for all positive
integer n. Let B = {x, x2, x3, · · · }. Then B is an m-system and A ∩ B = ∅. Let
T = {Q | Q is an m-system of S, x ∈ Q and Q ∩ A = ∅ }. Then T 6= ∅. By Zorn’s
Lemma, there exists a maximal element in T , namely M . Let H = {J | J is an ideal of S,
A ⊆ J and J∩M = ∅ }. Then H 6= ∅. By Zorn’s Lemma, there exists a maximal element
in H, namely I. By the same method given in Proposition 3.6, we have S \ I = M . Let
< M > be a subsemigroup of S generated by M . Then < M > is an m-system. If
< M > ∩A 6= ∅, then there exists m1,m2,m3, · · · ,mn ∈M such that m1m2m3 · · ·mn ∈
A. Since M is an m-system, there exists m ∈ M and x1, x2, x3, · · · , xn−1 ∈ S such that
m 6 m1x1m2x2m3 · · ·mn−1xn−1mn. Since A is a completely semiprime, ab ∈ A implies
ba ∈ A. It follows that m1x1m2x2m3 · · ·mn−1xn−1mn ∈ A. Thus m ∈ A. This is a
contradiction. By the maximality of M , we have < M >= M . Thus I is a completely
prime ideal of S containing A by Lemma 3.7. Since x 6∈ I, x 6∈ P ∗(A). Thus P ∗(A) ⊆ A
and so P ∗(A) = A.
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Corollary 3.9. Any completely semiprime ideal of an ordered semigroup (S, ·,6) is an
intersection of prime ideals of S.

Proposition 3.10. Let (S, ·,6) be an ordered semigroup and A an ideal of S. Then A
is completely semiprime if and only if P ∗(A) = A.

Proof. If A is completely semiprime, then P ∗(A) = A by Proposition 3.8. The converse
statement is obvious.

Lemma 3.11. Let (S, ·,6) be an ordered semigroup. The following statements are equiv-
alent:

(1) S is semisimple.

(2) (A2] = A for any ideal A of S.

(3) A ∩B = (AB] for any ideal A, B of S.

(4) I(a) ∩ I(b) = (I(a)I(b)] for any a, b ∈ S.

(5) (I(a)2] = I(a) for any a ∈ S.

Proof. The implications (3) ⇒ (4) and (4) ⇒ (5) are obvious and we will prove (1) ⇒
(2) ⇒ (3) and (5) ⇒ (1). (1) ⇒ (2). Let A be an ideal of S and x ∈ A. Then
x 6 s1xs2xs3 for some s1, s2, s3 ∈ S. We have s1xs2 ∈ A and xs3 ∈ A. Then x 6
s1xs2xs3 ∈ A2 and so x ∈ (A2]. Thus (A2] = A. (2)⇒ (3). Let A and B be an ideals of
S. Clearly (AB] ⊆ A∩B. Since A∩B is an ideal, A∩B = ((A∩B)(A∩B)] ⊆ (AB]. Thus
A ∩ B = (AB]. (5) ⇒ (1). Let a ∈ S. Then I(a)3 = I(a)I(a)I(a) ⊆ SI(a)S ⊆ (SaS].
We have

a ∈ I(a) = (I(a)2] ⊆ (I(a)5] = (I(a)3I(a)I(a)] ⊆ ((SaS]I(a)S] ⊆ (SaSaS].

Thus S is semisimple.

Proposition 3.12. Let (S, ·,6) be an ordered semigroup. Then S is semisimple if and
only if every ideal of S is semiprime.

Proof. Assume that S is semisimple. Let I and A be an ideals of S such that A2 ⊆ I.
We have A = (A2] ⊆ I by Lemma 3.11. Thus I is semiprime. Converesly, assume that
every ideal of S is semiprime. Let A be an ideal of S. Since A2 ⊆ (A2], A ⊆ (A2]. Clearly
(A2] ⊆ A. Thus A = (A2], which shows that S is semisimple by Lemma 3.11.

4. Primary ordered semigroups
In this section, we introduce left primary, right primary, primary and semiprimary ideals
of ordered semigroups and an ordered semigroups in which every ideal is primary and
every ideal is semiprimary.

Definition 4.1. Let (S, ·,6) be an ordered semigroup. An ideal I of S is said to be
left(right) primary if

(i) If A,B are ideals of S such that AB ⊆ I and B 6⊆ I(A 6⊆ I) implies A ⊆ Q∗(I)(B ⊆
Q∗(I)).
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(ii) Q∗(I) is a prime ideal.

An ideal I of S is said to be primary if it is both the left and right primary ideal.

Remark 2. An ideal I of S satisfies condition (i) of Definition 4.1 if and only if for every
x, y ∈ S such that I(x)I(y) ⊆ I and y /∈ I(x /∈ I), then x ∈ Q∗(I)(y ∈ Q∗(I)).

We have the example to show that left primary, right primary and primary ideals
are different.

Example 4.2. Let (S, ·,6) be an ordered semigroup such that the multiplication and
the order relation are defined by:

· a b c

a a a a
b a a b
c a a c

≤ = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)}.

The ideals of S are: {a}, {a, b} and S. It is evident that the ideal {a} is right primary
but not left primary.

Definition 4.3. Let (S, ·,6) be an ordered semigroup. An ideal I of S is said to be
semiprimary if Q∗(I) is a prime ideal.

It is clear that every left(right) primary ideal is a semiprimary ideal.

Definition 4.4. An ordered semigroup (S, ·,6) is said to be (left, right, semi)primary
if every ideal of S is (left, right, semi)primary.

Theorem 4.5. Let (S, ·,6) be a pseudo symmetric ordered semigroup and A an ideal
of S. Then A is left(right) primary if and only if for x, y ∈ S such that xy ∈ A and
y 6∈ A(x 6∈ A), then x ∈ Q∗(A)(y ∈ Q∗(A)).

Proof. Assume that A a left primary. Let x, y ∈ S such that xy ∈ A and y 6∈ A. Since
S is pseudo symmetric, we have (xsy] ⊆ A for all s ∈ S. Thus (xSy] ⊆ A. It follows
that I(x)I(y) ⊆ A. Since A is left primary and I(y) 6⊆ A, we have x ∈ I(x) ⊆ Q∗(A).
Conversely, let x, y ∈ S such that I(x)I(y) ⊆ A and y 6∈ A. Then xy ∈ A and so
x ∈ Q∗(A). Let ab ∈ Q∗(A) for any a, b ∈ S and b 6∈ Q∗(A). Then (ab)n ∈ A for some
positive integer n by Theorem 2.8. Let k be the least positive integer such that (ab)k ∈ A.
If k = 1, then ab ∈ A. Thus a ∈ Q∗(A), which shows that Q∗(A) is completely prime.
It follows that Q∗(A) is prime. If k > 1, then ab(ab)k−1 = (ab)k ∈ A. If b(ab)k−1 ∈ A.
Since (ab)k−1 6∈ A, we have b ∈ Q∗(A). This is a contradiction. Thus b(ab)k−1 6∈ A and
so a ∈ Q∗(A). It follows that Q∗(A) is prime. Thus A is a left primary.

It is easy to see the following lemma:

Lemma 4.6. Let A and B be an ideals of an ordered semigroup (S, ·,6). Then

(1) If A ⊆ B then Q∗(A) ⊆ Q∗(B);

(2) Q∗(Q∗(A)) = Q∗(A);
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(3) Q∗(A ∩B) = Q∗(A) ∩Q∗(B).

Theorem 4.7. An ordered semigroup (S, ·,6) is a left(right) primary if and only if every
ideal in S satisfies condition (i) in Definition 4.1.

Proof. Assume that every every ideal in S satisfies condition (i) in Definition 4.1. Let
I be an ideal of S such that AB ⊆ Q∗(I) for any ideals A,B of S. If B 6⊆ Q∗(I), then
A ⊆ Q∗(Q∗(I)) = Q∗(I). Thus Q∗(I) is prime and so I is a left primary. The converse
statement is clear.

Proposition 4.8. Let A be an ideal of a pseudo symmetric semiprimary ordered semi-
group (S, ·,6). Then A is completely semiprime if and only if A is completely prime.

Proof. Assume that A is completely semiprime. Let ab ∈ A for any a, b ∈ S. Since S
is a pseudo symmetric, we have Q∗(A) is completely prime by Proposition 2.6. Thus
a ∈ Q∗(A) or b ∈ Q∗(A). If a, b 6∈ A. Since A is completely semiprime, an, bn 6∈ A for all
positive integer n. Thus a, b 6∈ Q∗(A) by Theorem 2.8. This is contradiction. Thus A is
completely prime. The converse statement is obvious.

Proposition 4.9. Let (S, ·,6) be a pseudo symmetric ordered semigroup. Then S is
semiprimary if and only if every ideal A of S satisfies the condition: If xy ∈ A for any
x, y ∈ S, then x ∈ Q∗(A) or y ∈ Q∗(A).

Proof. Assume that S is semiprimary. Let A be an ideal of S such that xy ∈ A for any
x, y ∈ S. Since S is a pseudo symmetric, we have Q∗(A) is completely prime. Thus
x ∈ Q∗(A) or y ∈ Q∗(A). Conversely, let A be an ideal of S and xy ∈ Q∗(A) for any
x, y ∈ S. Then x ∈ Q∗(Q∗(A)) = Q∗(A) or y ∈ Q∗(Q∗(A)) = Q∗(A), which shows that
Q∗(A) is completely prime. Thus Q∗(A) is prime. Hence S is semiprimary.

Lemma 4.10. Let (S, ·,6) be an ordered semigroup. Then a maximal ideal M of S is
prime if and only if M = Q∗(M).

Proof. If a maximal ideal M is prime, then M = Q∗(M) is clear. Conversely, assume
that M = Q∗(M). Since M is a maximal ideal, we have M is prime.

Proposition 4.11. Let A be an ideal of an ordered semigroup (S, ·,6). If Q∗(A) is a
maximal ideal of S, then A is a semiprimary ideal.

Proof. If Q∗(A) is a maximal ideal of S, then Q∗(A) is prime by Lemma 4.10. Thus A
is a semiprimary ideal.

Lemma 4.12. Let A be an ideal of an ordered semigroup (S, ·,6) with identity. If
Q∗(A) = M , where M is the unique maximal ideal of S, then A is a primary ideal.

Proof. Let x, y ∈ S such that I(x)I(y) ⊆ A and y 6∈ A. If x 6∈ Q∗(A) = M . Then
I(x) 6⊆ M . Since each proper ideal of S is contained in M , we have I(x) = S. Thus
y = ey ∈ I(x)I(y) ⊆ A. This is contradiction. Thus x ∈ Q∗(A). We have Q∗(A) is prime
by Lemma 4.10. Thus A is a left primary ideal. Similarly, we have A is a right primary
ideal. Hence A is a primary ideal.
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Theorem 4.13. Let (S, ·,6) be an ordered semigroup with identity. If every(nonzero,
assume this if S has 0) proper prime ideals are maximal, then S is a primary.

Proof. If S is not a simple, then S has a unique maximal ideal M , which is the union
of all proper ideals of S. By hypothesis M is the only proper (nonzero) prime ideal of
S. If A is a proper (nonzero) ideal, then Q∗(A) = M . Thus A is primary by Lemma
4.12. If S has 0. If I(0) is a prime ideal, then I(0) is primary. If I(0) is not prime, then
Q∗(I(0)) = M . Thus I(0) is primary by Lemma 4.12. Hence S is primary.

Proposition 4.14. Let (S, ·,6) be an ordered semigroup. If A is a semiprime ideal in
S, then the following conditions are equivalent:

(1) A is a prime.

(2) A is a primary.

(3) A is a left primary.

(4) A is a right primary.

(5) A is a semiprimary.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are obvious.
Since A is a semiprime, we have Q∗(A) = A by Proposition 3.6. Thus (1) and (5) are
equivalent.

Theorem 4.15. Let (S, ·,6) be an ordered semigroup. Then S is semiprimary if and
only if the set of all prime ideals of S forms a chain under the set inclusion.

Proof. Let A and B be any prime ideals of S. Thus A ∩ B = Q∗(A ∩ B). Since S is a
semiprimary, A ∩ B is prime. If A 6⊆ B and B 6⊆ A, then there exists elements a, b ∈ S
such that a ∈ A \ B and b ∈ B \ A. Thus I(a)I(b) ⊆ A ∩ B and a, b 6∈ A ∩ B. This is
contradiction. Hence either A ⊆ B or B ⊆ A. Conversely, let A be any ideal of S. If the
set of all prime ideals of S forms a chain under the set inclusion, then Q∗(A) is a prime,
which shows that A is a semiprimary ideal. Thus S is a semiprimary.

Theorem 4.16. Let (S, ·,6) be a duo semiprimary ordered semigroup. Then S has the
following properties:

(1) Set of all prime ideals of S forms a chain under the set inclusion.

(2) For any e, f ∈ E(S), either e 6 xf and e 6 fy or f 6 xe and f 6 ey for some
x, y ∈ S.

Proof. (1) This follow by Theorem 4.15. (2) Let e, f ∈ E(S). Since S is semiprimary,
we have Q∗(I(e)) and Q∗(I(f)) are prime. Thus Q∗(I(e)) ⊆ Q∗(I(f)) or Q∗(I(f)) ⊆
Q∗(I(e)) by (1). If Q∗(I(e)) ⊆ Q∗(I(f)). Then en ∈ I(f) for some positive integer
n by Lemma 2.7. It follows that e ∈ I(f). Since S is a duo ordered semigroup, we
have I(f) = (Sf ] = (fS]. Thus e 6 xf and e 6 fy for some x, y ∈ S. Similarly, if
Q∗(I(f)) ⊆ Q∗(I(e)) then f 6 xe and f 6 ey for some x, y ∈ S.

Theorem 4.17. Let (S, ·,6) be a regular pseudo symmetric ordered semigroup. The
following statements are equivalent:

(1) Every ideal of S is prime.
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(2) S is a primary ordered semigroup.

(3) S is a left primary ordered semigroup.

(4) S is a right primary ordered semigroup.

(5) S is a semiprimary ordered semigroup.

(6) The set of all prime ideals of S forms a chain under the set inclusion.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (5) and (2) ⇒ (4) ⇒ (5) are obvious.
(5) ⇒ (1) Let A be an ideal of S and x2 ∈ A for any x ∈ S. Since S is regular pseudo
symmetric, we have x ∈ (xSx] ⊆ A, which shows that A is completely semiprime. It
follows that A is prime by Proposition 4.8 and Proposition 2.6. We have (5) and (6) are
equivalent by Theorem 4.15.

Following result is obvious its proof is omitted.

Lemma 4.18. Let (S, ·,6) be an ordered semigroup. The following statements are equiv-
alent:

(1) Set of all the principal ideals of S forms a chain under the set inclusion.

(2) Set of all the ideals of S forms a chain under the set inclusion.

Theorem 4.19. Let (S, ·,6) be a semisimple ordered semigroup. The following state-
ments are equivalent:

(1) Every ideal of S is prime.

(2) S is a primary ordered semigroup.

(3) S is a left primary ordered semigroup.

(4) S is a right primary ordered semigroup.

(5) S is a semiprimary ordered semigroup.

(6) The set of all prime ideals of S forms a chain under the set inclusion.

(7) The set of all principal ideals of S forms a chain under the set inclusion.

(8) The set of all the ideals of S forms a chain under the set inclusion.

Proof. Let A be an ideal of S. Since S is semisimple, we have A is a semiprime by
Proposition 3.12. Thus (1) to (5) are equivalent by Proposition 4.14. We have (5) and
(6) are equivalent by Theorem 4.15. The implication (8) ⇒ (6) is obvious. (6) ⇒ (7).
Let I(a) and I(b) be a principal ideals of S. We have Q∗(I(a)) ⊆ Q∗(I(b)) or Q∗(I(b)) ⊆
Q∗(I(a)). Since S is a semisimple, I(a) ⊆ I(b) or I(b) ⊆ I(a). We have (7) and (8) are
equivalent by Lemma 4.18. This complete the proof of the theorem.

Theorem 4.20. Let (S, ·,6) be a duo semisimple ordered semigroup. The following
statements are equivalent:

(1) Every ideal of S is prime.

(2) S is a primary ordered semigroup.

(3) S is a left primary ordered semigroup.

(4) S is a right primary ordered semigroup.



On primary ordered semigroups 139

(5) S is a semiprimary ordered semigroup.

(6) The set of all prime ideals of S forms a chain under the set inclusion.

(7) The set of all principal ideals of S forms a chain under the set inclusion.

(8) The set of all the ideals of S forms a chain under the set inclusion.

(9) For any e, f ∈ E(S), either e 6 xf and e 6 fy or f 6 xe and f 6 ey for some
x, y ∈ S.

Proof. We have (1) to (8) are equivalent by Theorem 4.19. (5)⇒ (9). By Theorem 4.16.
(9)⇒ (7). Let I(a) and I(b) be a principal ideals of S. Since S is duo semisimple , we have
S is regular. Thus a 6 axa and b 6 byb for some x, y ∈ S. It follows that ax, by ∈ E(S).
Then either ax 6 sby and ax 6 byt or by 6 sax and by 6 axt for some s, t ∈ S by (9).
If ax 6 sby and ax 6 byt. We have a 6 axa 6 axaxa 6 sbybyta ∈ (SbS] ⊆ I(b). Thus
I(a) ⊆ I(b). Similarly, if by 6 sax and by 6 axt then I(b) ⊆ I(a). This complete the
proof.

Corollary 4.21. Let (S, ·,6) be a duo regular ordered semigroup. The following state-
ments are equivalent:

(1) Every ideal of S is prime.

(2) S is a primary ordered semigroup.

(3) S is a left primary ordered semigroup.

(4) S is a right primary ordered semigroup.

(5) S is a semiprimary ordered semigroup.

(6) The set of all prime ideals of S forms a chain under the set inclusion.

(7) The set of all principal ideals of S forms a chain under the set inclusion.

(8) The set of all the ideals of S forms a chain under the set inclusion.

(9) For any e, f ∈ E(S), either e 6 xf and e 6 fy or f 6 xe and f 6 ey for some
x, y ∈ S.

Corollary 4.22. Let (S, ·,6) be an ordered semigroup. Then every ideal of S is prime
if and only if S is a semisimple (semi)primary.

Proof. Assume that every ideal of S is prime. Let x ∈ S. We have I(x)I(x) ⊆ (I(x)2].
Since (I(x)2] is an ideal of S, I(x) ⊆ (I(x)2] and so I(x) = (I(x)2]. Thus S is a semisim-
ple (semi)primary by Lemma 3.11 and Theorem 4.19. Conversely, if S is a semisimple
(semi)primary, then every ideal of S is prime by Theorem 4.19.

Corollary 4.23. Let (S, ·,6) be an ordered semigroup. Then every ideal of S is prime
if and only if S is a semisimple and the set of all the ideals of S forms a chain under the
set inclusion.

Corollary 4.24. Let (S, ·,6) be a duo ordered semigroup. The following statements are
equivalent:

(1) Every ideal of S is prime.

(2) S is regular semiprimary.
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(3) S is regular and for any e, f ∈ E(S), either e 6 xf and e 6 fy or f 6 xe and
f 6 ey for some x, y ∈ S.
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On φ-2-absorbing primary subsemimodules
over commutative semirings

Issaraporn Thongsomnuk, Ronnason Chinram
Pattarawan Singavananda and Patipat Chumket

Abstract. In this paper, we introduce the concepts of φ-2-absorbing primary subsemi-
modules over commutative semirings. Let R be a commutative semiring with identity
and M be an R-semimodule. Let φ : S(M) −→ S(M) ∪ {∅} be a function, where S(M)

is the set of subsemimodules of M . A proper subsemimodule N of M is said to be a
φ-2-absorbing primary subsemimodule of M if rsx ∈ N \φ(N) implies rx ∈ N or sx ∈ N
or rs ∈

√
(N :M), where r, s ∈ R and x ∈ M . We prove some basic properties of these

subsemimodules, give a characterization of φ-2-absorbing primary subsemimodules, and
investigate φ-2-absorbing primary subsemimodules of quotient semimodules.

1. Introduction

In 2007, the concept of 2-absorbing ideals of rings was introducted by
Badawi [3]. He defined a 2-absorbing ideal I of a commutative ring R
to be a proper ideal and if whenever a, b, c ∈ R with abc ∈ I, then ab ∈ I
or ac ∈ I or bc ∈ I. Later in 2011 [7], Darani and Soheilnia introduced the
concept of 2-absorbing submodules and studied their properties. A proper
submodule N of an R-module M is said to be a 2-absorbing submodule of
M if a, b ∈ R and m ∈ M with abm ∈ N , then am ∈ N or bm ∈ N or
ab ∈ (N :M).

In 2012, Chaudhari introduced the concept of 2-absorbing ideals of a
commutative semiring in [6]. He defined a 2-absorbing ideal I of a com-
mutative semiring R to be a proper ideal and if whenever a, b, c ∈ R with
abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In the same year, Thongsomnuk

2010 Mathematics Subject Classification: 13C05, 13C13, 16Y60
Keywords: Semimodule, φ-2-absorbing primary subsemimodule, subtractive subsemi-
module, Q-subsemimodule
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introduced the concept of 2-absorbing subsemimodules over commutative
semirings as a proper subsemimodule N of an R-semimodule M such that
if whenever a, b ∈ R and m ∈ M with abm ∈ N , then am ∈ N or bm ∈ N
or ab ∈ (N :M). The concept of 2-absorbing ideals of commutative semir-
ings and 2-absorbing subsemimodules has been widely recognized by several
mathematicians, see [8] and [11].

Atani and Kohan (2010) introduced and examined the concept of pri-
mary ideals in a commutative semiring, as well as primary subsemimodules
in semimodules over a commutative semiring (see [5]). They defined a pri-
mary ideal I of a commutative semiring R as a proper ideal, such that
whenever a, b ∈ R with ab ∈ I, then a ∈ I or bk ∈ I for some k ∈ N.
Similarly, a primary subsemimodule N of an R-semimodule M is defined
as a proper subsemimodule, such that whenever a ∈ R and m ∈ M with
am ∈ N , then m ∈ N or ak ∈ (N : M) for some k ∈ N. In 2015, Dubey
and Sarohe [9] defined the concept of 2-absorbing primary subsemimod-
ules of a semimodule M over a commutative semiring R with 1 6= 0 which
is a generalization of primary subsemimodules of semimodules. A proper
subsemimodule N of a semimodule M is said to be a 2-absorbing primary
subsemimodule of M if abm ∈ N implies ab ∈

√
(N :M) or am ∈ N or

bm ∈ N for some a, b ∈ R and m ∈M .

Anderson and Batanieh (2008) generalized the concept of prime ideals,
weakly prime ideals, almost prime ideals, n-almost prime ideals and ω-
prime ideals of rings to φ-prime ideals of rings with φ, see in [1]. They
defined a φ-prime ideal I of a ring R with φ be a proper ideal and if for
a, b ∈ R, ab ∈ I \ φ(I) implies a ∈ I or b ∈ I. Later in 2016, Petchkaew,
Wasanawichit and Pianskool [13] introduced the concept of φ-n-absorbing
ideals which are a generalization of n-absorbing ideals. A proper ideal I
of R is called a φ-n-absorbing ideal if whenever x1, x2, . . . , xn+1 ∈ I \ φ(I)
for x1, x2, . . . xn+1 ∈ R, then x1x2 . . . xi−1xi+1 . . . xn+1 ∈ I for some i ∈
{1, 2, . . . , n + 1}. In 2017, Moradi and Ebrahimpour [12] introduced the
concept of φ-2-absorbing primary and φ-2-absorbing primary submodules.
Let φ : S(M) → S(M) ∪ {∅} be a function, where S(M) is the set of
R−module M . They said that a proper submodule N of M is a φ-2-
absorbing primary submodule if rsx ∈ N \φ(N) implies rx ∈ N , or sx ∈ N ,
or rs ∈

√
(N :M), where r, s ∈ R and x ∈M .

In this paper, we extend the concepts of φ-2-absorbing primary submod-
ules over commutative rings to the concepts of φ-2-absorbing primary sub-
semimodules over commutative semirings. We explore fundamental prop-
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erties of these subsemimodules, provide a characterization of φ-2-absorbing
primary subsemimodules, and investigate φ-2-absorbing primary subsemi-
modules of quotient semimodules.

2. Preliminaries

Definition 2.1. [10] Let R be a semiring. A left R-semimodule (or a left
semimodule over R) is a commutative monoid (M,+) with additive identity
0M for which a function R×M →M , denoted by (r,m) 7→ rm and called
the scalar multiplication, satisfies the following conditions for all elements
r and r′ of R and all elements m and m′ of M :

(1) (rr′)m = r(r′m),

(2) r(m+m′) = rm+ rm′,

(3) (r + r′)m = rm+ r′m,

(4) 1Rm = m, and

(5) r0M = 0M = 0Rm.

Throughout this paper, we assume that R is a commutative semirings
identity 1 6= 0 and a left R-semimodule will be considered as a unitary
semimodule.

Definition 2.2. [10] LetM be an R-semimodule and N a subset ofM . We
say N is a subsemimodule of M precisely when N is itself an R-semimodule
with respect to the operations for M .

Definition 2.3. [5] Let M be an R-semimodule, N a subsemimodule of
M , and m ∈M . Then an associated ideal of N is denoted as

(N :M) = {r ∈ R | rM ⊆ N} and (N : m) = {r ∈ R | rm ∈ N}.

Definition 2.4. [5] An ideal I of a semiring R is called a subtractive ideal
if a, a+ b ∈ I and b ∈ R, then b ∈ I.

A subsemimodule N of an R-semimodule M is called a subtractive sub-
semimodule if x, x+ y ∈ N and y ∈M , then y ∈ N.

Proposition 2.5. [5] Let M be an R-semimodule. If N is a subtractive
subsemimodule of M and m ∈M , then (N :M) and (N : m) are subtractive
ideals of R.
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Lemma 2.6. Let (N : M) be a subtractive ideal of R. If a ∈ (N : M) and
a+ b ∈

√
(N :M), then b ∈

√
(N :M).

Proof. Assume that a ∈ (N : M) and a + b ∈
√

(N :M). There exists
k ∈ N such that (a + b)k ∈ (N : M). Then

∑k
i=0

(
k
i

)
ak−ibi ∈ (N : M).

Since
∑k−1

i=0

(
k
i

)
ak−ibi ∈ (N : M) and (N : M) is a subtractive ideal, we

obtain bk ∈ (N :M). Thus, b ∈
√
(N :M).

Definition 2.7. [12] Let M be an R-semimodule. We define the functions
φα : S(M) → S(M) ∪ {∅} as follows: φ0(N) = 0, φ∅(N) = ∅, φm+1(N) =
(N : M)mN for every m > 0 and φω(N) =

⋂∞
m=0(N : M)mN , where N is

a subsemimodule of M and S(M) is the set of subsemimodules of M .

Definition 2.8. [12] LetM be an R-semimodule, S(M) the set of subsemi-
modules of M and let f1, f2 : S(M)→ S(M) ∪ {∅} be two functions. Then
f1 6 f2 if f1(N) ⊆ f2(N) for all N ∈ S(M).

Definition 2.9. [2] A subsemimodule N of an R-semimodule M is called a
partitioning subsemimodule(or Q-subsemimodule) if there exists a nonempty
subset Q of M such that

1. RQ ⊆ Q where RQ = {rq|r ∈ R and q ∈ Q},

2. M = ∪{q +N |q ∈ Q} where q +N = {q + n|n ∈ N}, and

3. if q1, q2 ∈ Q, then (q1 +N) ∩ (q2 +N) 6= ∅ if and only if q1 = q2.

Let M be an R-semimodule and N a Q-subsemimodule of M . Let
M/N(Q) = {q + N |q ∈ Q}. Then M/N(Q) is a semimodule over R under
the addition ⊕ and the scalar multiplication � defined as follow: for any
q1, q2, q ∈ Q and r ∈ R, (q1+N)⊕(q2+N) = q3+N and r

⊙
(q+N) = q4+N

where q3, q4 ∈ Q are the unique elements such that q1 + q2 + N ⊆ q3 + N
and rq + N ⊆ q4 + N . The R-semimodule M/N(Q) is called the quotient
semimodule of M by N .

Lemma 2.10. [4] Let M be an R-semimodule, N a Q-subsemimodule of M
and P a subtractive subsemimodule of M with N ⊆ P . Then the followings
hold:

1. N is a Q ∩ P -subsemimodule of P .

2. P/N(Q∩P ) = {q +N |q ∈ Q ∩ P} is a subsemimodule of M/N(Q).

Remark 2.11. The zero element of P/NQ∩P is the same as the zero element
of M/N(Q) which is 0M +N .
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3. φ-2-absorbing primary subsemimodules

In this section, we investigate the φ-2-absorbing primary subsemimodules
over commutative semirings. Initially, we introduce a novel definition for
φ-2-absorbing primary subsemimodules. Subsequently, we explore various
properties of φ-2-absorbing primary subsemimodules.

Definition 3.1. Let M be an R-semimodule, φ : S(M) −→ S(M) ∪ {∅}
a function, where S(M) is the set of subsemimodules of M . We say a
proper subsemimodule N of M is a φ-2-absorbing primary subsemimodule
if whenever rsx ∈ N\φ(N) implies rx ∈ N , or sx ∈ N , or rs ∈

√
(N :M) =

{a ∈ R | anM ⊆ N for some n ∈ N}, where r, s ∈ R and x ∈M .

Theorem 3.2. Let M be an R-semimodule, N a φ-2-absorbing primary
subsemimodule of M and K be a subsemimodule of M such that φ(N∩K) =
φ(N). Then N ∩K is a φ-2-absorbing primary subsemimodule of K.

Proof. Clearly, N∩K is a proper subsemimodule of K. Let rsx ∈ (N∩K)\
φ(N ∩K) where r, s ∈ R and x ∈ K. We have rsx ∈ N \ φ(N ∩K). Thus,
rsx ∈ N \ φ(N) because φ(N ∩ K) = φ(N). Since N is a φ-2-absorbing
primary subsemimodule of M , we obtain rx ∈ N , or sx ∈ N , or rs ∈√
(N :M). If rx ∈ N or sx ∈ N , then rx ∈ N ∩K or sx ∈ N ∩K because

x ∈ K and K is an R-semimodule. If rs ∈
√
(N :M), then (rs)nM ⊆ N

for some positive integer n. In particular, (rs)nK ⊆ (rs)nM ⊆ N and we
know that (rs)nK ⊆ K. Then (rs)nK ⊆ N ∩K for some positive integer
n. Thus, rs ∈

√
(N ∩K : K). Hence N ∩ K is a φ-2-absorbing primary

subsemimodule of K.

Consider the following example. Let R = Z+
0 and M = Z+

0 , where
throughout this paper, Z+

0 denotes the set of non-negative integers (includ-
ing zero). We define the function φ : S(Z+

0 )→ S(Z+
0 ) ∪ {∅} by φ(A) = {0}

where A ∈ S(Z+
0 ). Clearly, 8Z

+
0 is a φ-2-absorbing primary subsemimodule

of Z+
0 and mZ+

0 is a subsemimodule of Z+
0 where m ∈ Z+

0 . We see that
φ(8Z+

0 ∩ mZ+
0 ) = {0} = φ(8Z+

0 ). Then 8Z+
0 ∩ mZ+

0 = [8,m]Z+
0 is a φ-2-

absorbing primary subsemimodule of mZ+
0 . This example demonstrates the

concept outlined in Theorem 3.13.

Theorem 3.3. Let M be an R-semimodule, φ : S(M) −→ S(M) ∪ {φ} a
function, and let N be a proper subsemimodule of M . Then the following
conditions are equivalent:
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1. N is a φ-2-absorbing primary subsemimodule of M .

2. For every r ∈ R and x ∈M with rx /∈ N ,

(N : rx) ⊆ (
√
(N :M) : r) ∪ (N : x) ∪ (φ(N) : rx).

Proof. First, let a ∈ (N : rx). Then arx ∈ N . If arx ∈ φ(N), then
a ∈ (φ(N) : rx). If arx /∈ φ(N), then arx ∈ N \ φ(N). Since N is a φ-2-
absorbing primary subsemimodule of M and rx /∈ N , we have ax ∈ N or
a ∈ (

√
(N :M) : r). Hence (N : rx) ⊆ (

√
(N :M) : r) ∪ (N : x) ∪ (φ(N) :

rx).
Conversely, let r, s ∈ R and x ∈ M with rsx ∈ N \ φ(N) and rx /∈ N .

Since rsx ∈ N and rsx /∈ φ(N), we obtain s ∈ (N : rx) and s /∈ (φ(N) :
rx). From (N : rx) ⊆ (

√
(N :M) : r) ∪ (N : x) ∪ (φ(N) : rx). Thus,

s ∈ (
√

(N :M) : r) or s ∈ (N : x). Hence, sr ∈
√

(N :M) or sx ∈ N .
Therefore, N is a φ-2-absorbing primary subsemimodule of M .

Moradi and Ebrahimpour [12] introduced the definition of φ-triple-zero
within the context of submodules. In this work, we will extend and adapt
this definition to apply specifically to subsemimodules.

Definition 3.4. LetM be an R-semimodule, and φ : S(M) −→ S(M)∪{∅}
a function. Assume that N is a φ-2-absorbing primary subsemimodule
of M , r, s ∈ R and x ∈ M . We say (r, s, x) is a φ-triple-zero of N if
rsx ∈ φ(N), rx, sx /∈ N and rs /∈

√
(N :M).

Theorem 3.5. Let M be an R-semimodule, φ : S(M) −→ S(M) ∪ {∅} a
function, and let N be a subtractive subsemimodule of M such that φ(N) ⊆
N . Assume that N is a φ-2-absorbing primary subsemimodule of M and
(r, s, x) is a φ-triple-zero of N . Then the following statements hold:

1. r(N :M)x ⊆ φ(N) and s(N :M)x ⊆ φ(N).

2. (N :M)2x ⊆ φ(N).

3. rsN ⊆ φ(N).

4. r(N :M)N ⊆ φ(N) and s(N :M)N ⊆ φ(N).

Proof. (1). Suppose that there exists t ∈ (N : M) such that rtx /∈ φ(N).
Since (r, s, x) is a φ-triple-zero of N , we have rsx ∈ φ(N). So, r(s+ t)x =
rsx + rtx /∈ φ(N). Since φ(N) ⊆ N , we obtain r(s + t)x ∈ N \ φ(N).
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Since N is a φ-2-absorbing primary subsemimodule of M and rx, sx /∈ N ,
we have r(t + s) ∈

√
(N :M). By Lemma 2.6 and rt ∈ (N : M), we have

rs ∈
√
(N :M), which is a contradiction with φ-triple-zero ofN . Therefore,

r(N :M)x ⊆ φ(N). Similarly, s(N :M)x ⊆ φ(N).
(2). Suppose that there exists t, k ∈ (N : M) such that tkx /∈ φ(N).

Since (r, s, x) is a φ-triple-zero of N , we have rsx ∈ φ(N). By part (1), we
have stx, rkx ∈ φ(N). Thus, (t+r)(k+s)x /∈ φ(N). Then (t+r)(k+s)x ∈
N\φ(N). Since N is a φ-2-absorbing primary subsemimodule of M and
rx, sx /∈ N , we have (t+ r)(k+ s) ∈

√
(N :M). By Lemma 2.6, we obtain

rs ∈
√

(N :M), which is a contradiction with φ-triple-zero of N . Hence,
(N :M)2x ⊆ φ(N).

(3). Suppose that there exists y ∈ N such that rsy /∈ φ(N). Since
(r, s, x) is a φ-triple-zero of N , we have rsx ∈ φ(N). So, rs(x+ y) /∈ φ(N).
Then rs(x+ y) ∈ N\φ(N) because φ(N) ⊆ N . Since N is a φ-2-absorbing
primary subsemimodule, r(x+ y) ∈ N or s(x+ y) ∈ N or rs ∈

√
(N :M).

Since N is a subtractive subsemimodule and y ∈ N , we obtain rx ∈ N or
sx ∈ N or rs ∈

√
(N :M), which is a contradiction with φ-triple-zero of

N . Therefore, rsN ⊆ φ(N).
(4). Suppose that there exists t ∈ (N : M) and y ∈ N such that

rty /∈ φ(N). Since (r, s, x) is a φ-triple-zero of N , we obtain rsx ∈ φ(N).
By parts (1) and (3), we have rtx, rsy ∈ φ(N). So, r(s+ t)(x+ y) /∈ φ(N).
Since φ(N) ⊆ N and y ∈ N , we get r(s+ t)(x+y) ∈ N\φ(N). Since N is a
φ-2-absorbing primary subsemimodule, r(x+y) ∈ N or (s+t)(x+y) ∈ N or
r(s+ t) ∈

√
(N :M). Since N is a subtractive subsemimodule and Lemma

2.6, we have rx ∈ N or sx ∈ N or rs ∈
√
(N :M), which is a contradiction

with φ-triple-zero of N . Hence, r(N : M)N ⊆ φ(N). Similarly, s(N :
M)N ⊆ φ(N).

Corollary 3.6. Let M be an R-semimodule, φ : S(M) −→ S(M) ∪ {∅} a
function, and let N be a subtractive subsemimodule of M such that φ(N) ⊆
N . Assume that N is a φ-2-absorbing primary subsemimodule of M and is
not a 2-absorbing primary subsemimodule. Then (N :M)2N ⊆ φ(N).

Proof. Since N is a φ-2-absorbing primary subsemimodule of M and is
not a 2-absorbing primary subsemimodule, we have (r, s, x) is a φ-triple-
zero of N . Assume that t, k ∈ (N : M), y ∈ N and tky /∈ φ(N). So,
tky ∈ N\φ(N). Consider (r + t)(s + k)(x + y) /∈ φ(N) because N is a φ-
triple zero and Theorem 3.5 and φ(N) ⊆ N is subtractive subsemimodule.
Then (r + t)(s+ k)(x+ y) ∈ N\φ(N). Since N is a φ-2-absorbing primary
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subsemimodule, we have (r + t)(x + y) ∈ N or (s + k)(x + y) ∈ N or
(r + t)(s + k) ∈

√
(N :M). Since N is a subtractive subsemimodule and

Lemma 2.6, we have rx ∈ N or sx ∈ N or rs ∈
√
(N :M), which is a

contradiction with φ-triple-zero of N . Therefore, (N :M)2N ⊆ φ(N).

To illustrate Theorem 3.16(3), consider the following example. We de-
fine a function φ : S(Z+

0 )→ S(Z+
0 ) ∪ {∅} by φ(A) = 2A where A ∈ S(Z+

0 ).
In this context, 15Z+

0 is demonstrably a φ-2-absorbing primary subsemi-
module and a subtractive subsemimodule of Z+

0 . Interestingly, 30Z+
0 =

φ(15Z+
0 ) ⊆ 15Z+

0 . Furthermore, the triplet (3, 10, 2) qualifies as a φ-triple-
zero of 15Z+

0 . In this case, (3 · 10) · 15Z+
0 = 450Z+

0 ⊆ 30Z+
0 , which aligns

with the concept outlined in Theorem 3.16(3).
In 2017, the concept of weakly φ-2-absorbing primary submodules was

introduced by Moradi and Ebrahimpour [12]. In the current study, we will
extend this idea and provide a definition for weakly φ-2-absorbing primary
subsemimodules.

Definition 3.7. Let M be an R-semimodule, φ : S(M) → S(M) ∪ {∅}
be a function, where S(M) is the set of R−module M . They said that a
proper submodule N of M is a weakly φ-2-absorbing primary submodule if
0 6= rsx ∈ N \ φ(N) implies rx ∈ N , or sx ∈ N , or rs ∈

√
(N :M), where

r, s ∈ R and x ∈M .

Proposition 3.8. Let M be an R-semimodule, φ : S(M) −→ S(M)∪{∅} a
function, and let N be subtractive subsemimodule of M such that φ(N) ⊆ N
that is not 2-absorbing primary subsemimodule of M . If N is a weakly 2-
absorbing primary subsemimodule of M , then (N :M)2N = {0}.

Proof. Assume that N is a weakly 2-absorbing primary subsemimodule of
M but N is not 2-absorbing primary subsemimodule of M . Then N is a
φ0-2-absorbing primary subsemimodule of M . By Corollary 3.6, we obtain
(N : M)2N ⊆ φ0(N) = {0}. Clearly, {0} ⊆ (N : M)2N . Thus, (N :
M)2N = {0}.

Subsequently, we analyze the function φn, as defined in Definition 2.7,
for cases where n 6 4. We also explore the function φω, also defined in
Definition 2.7, which establishes a connection with φ-2-absorbing primary
subsemimodules.

Proposition 3.9. Let M be an R-semimodule, φ : S(M) −→ S(M) ∪
{∅} a function, and let N be subtractive subsemimodule of M such that
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φ(N) ⊆ N that is not 2-absorbing primary subsemimodule of M . If N is a
φ-2-absorbing primary subsemimodule of M for some φ with φ 6 φ4, then
(N :M)2N = (N :M)3N .

Proof. Assume thatN is a φ-2-absorbing primary subsemimodule ofM with
φ 6 φ4 and N is not 2-absorbing primary subsemimodule. By Corollary
3.6, we obtain (N : M)2N ⊆ φ(N). Since φ 6 φ4, then φ(N) ⊆ φ4(N) =
(N : M)3N . Now, we have (N : M)2N ⊆ (N : M)3N . Since N is an
R-semimodule, we have (N : M)3N = (N : M)(N : M)2N ⊆ (N : M)2N .
Therefore, (N :M)2N = (N :M)3N .

Corollary 3.10. Let M be an R-semimodule, φ : S(M) −→ S(M)∪ {∅} a
function, and let N be subtractive subsemimodule of M such that φ(N) ⊆ N .
If N is a φ-2-absorbing primary subsemimodule of M with φ 6 φ4, then N
is a φω-2-absorbing primary subsemimodule of M .

Proof. Assume that N is a φ-2-absorbing primary subsemimodule of M
with φ 6 φ4. It’s clear that N is a φω-2-absorbing primary subsemimodule
of M if N is a 2-absorbing primary subsemimodule. Now, we consider in
case that N is not 2-absorbing primary, then (N : M)2N = (N : M)3N ,
by Proposition 3.9. Since N is a φ-2-absorbing primary subsemimodule
of M with φ 6 φ4, we have N is φ4-2-absorbing primary. So, φω(N) =⋂∞
m=0(N : M)mN = (N : M)3N = φ4. Thus, N is a φω-2-absorbing

primary subsemimodule of M .

Lemma 3.11. Let N be a subtractive φ-2-absorbing primary subsemimodule
of an R-semimodule M and a, b ∈ R. Suppose that abK ⊆ N\φ(N) for some
subsemimodule K of M . Then ab ∈

√
(N :M) or aK ⊆ N or bK ⊆ N .

Proof. Let abK ⊆ N \ φ(N) for some subsemimodule K of M . Assume
that ab /∈

√
(N :M), aK * N and bK * N . Then ak1 /∈ N and bk2 /∈ N

for some k1, k2 ∈ K. Since abk1 ∈ N\φ(N), ab /∈
√
(N :M), ak1 /∈ N

and N is a φ-2-absorbing primary subsemimodule, we have bk1 ∈ N . Since
abk2 ∈ N\φ(N), ab /∈

√
(N :M), bk2 /∈ N andN is a φ-2-absorbing primary

subsemimodule, we obtain ak2 ∈ N . We know that ab(k1 + k2) ∈ N\φ(N)
and ab /∈

√
(N :M). Since N is a φ-2-absorbing primary subsemimodule,

we have a(k1 + k2) ∈ N or b(k1 + k2) ∈ N . If a(k1 + k2) ∈ N , then
ak1 ∈ N (as N is a subtractive), which is a contradiction. If b(k1+k2) ∈ N ,
then bk2 ∈ N (as N is a subtractive), which is a contradiction. Hence,
ab ∈

√
(N :M) or aK ⊆ N or bK ⊆ N .
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Theorem 3.12. Let K be a subtractive subsemimodule of M and
√
(K :M)

be a subtractive ideal of R. If K is a φ-2-absorbing primary subsemimodule
of M , then whenever IJN ⊆ K\φ(K) for some ideals I, J of R and a
subsemimodule N of M , then IJ ⊆

√
(K :M) or IN ⊆ K or JN ⊆ K.

Proof. Let K be a φ-2-absorbing primary subsemimodule of M . Assume
that IJN ⊆ K\φ(K) for some ideals I, J of R and a subsemimodule N
of M . Suppose that IJ *

√
(K :M), IN * K and JN * K. Then

a1N * K and b1N * K for some a1 ∈ I and b1 ∈ J . Since a1b1N ⊆
K\φ(K), a1N * K, b1N * K and Lemma 3.11, we have a1b1 ∈

√
(K :M).

Since IJ *
√
(K :M), we have a2b2 /∈

√
(K :M) for some a2 ∈ I and

b2 ∈ J . Since a2b2N ⊆ K\φ(K) and a2b2 /∈
√
(K :M), we have a2N ⊆ K

or b2N ⊆ K by Lemma 3.11. Here three cases arise.

Case I: When a2N ⊆ K but b2N * K. Since a1b2N ⊆ K\φ(K),
b2N * K and a1N * K, then by Lemma 3.11, a1b2 ∈

√
(K :M). We know

that a2N ⊆ K but a1N * K, so (a1 + a2)N * K (as K is subtractive).
Since (a1+a2)b2N ⊆ K\φ(K), b2N * K and (a1+a2)N * K, we have (a1+
a2)b2 ∈

√
(K :M) by Lemma 3.11. Since a1b2 ∈

√
(K :M) and

√
(K :M)

is subtractive, we have a2b2 ∈
√

(K :M), which is a contradiction.

Case II: When b2N ⊆ K but a2N * K. We can conclude similary to
Case I.

Case III: When a2N ⊆ K and b2N ⊆ K. Since b2N ⊆ K and b1N *
K, we have (b1+b2)N * K. Since a1(b1+b2)N ⊆ K\φ(K), (b1+b2)N * K
and a1N * K, we get that a1(b1 + b2) ∈

√
(K :M) by Lemma 3.11.

Since a1b1 ∈
√
(K :M) and

√
(K :M) is subtractive, we conclude that

a1b2 ∈
√
(K :M). Since a2N ⊆ K, a1N * K and K is subtractive implies

(a1 + a2)N * K. Since (a1 + a2)b1N ⊆ K\φ(K), (a1 + a2)N * K and
b1N * K, we have (a1 + a2)b1 ∈

√
(K :M) by Lemma 3.11. Since a1b1 ∈√

(K :M), (a1+a2)b1 ∈
√

(K :M) and
√
(K :M) is subtractive, we have

a2b1 ∈
√
(K :M). Since (a1 + a2)(b1 + b2)N ⊆ K\φ(K), (a1 + a2)N * K

and (b1+ b2)N * K, by Lemma 3.11, (a1+a2)(b1+ b2) ∈
√
(K :M). Since

a2b1, a1b2, a1b1 ∈
√
(K :M) and

√
(K :M) is subtractive, then a2b2 ∈√

(K :M), which is a contradiction.
Hence, IJ ⊆

√
(K :M) or IN ⊆ K or JN ⊆ K.

Theorem 3.13. Let M an R-semimodule, and let φ : S(M) −→ S(M)∪{∅}
be a function. Assume that N is a subsemimodule of M such that φ(N) is a
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2-absorbing primary subsemimodule of M and φ(N) ⊆ N . Then N is a φ-
2-absorbing primary subsemimodule of M if and only if N is a 2-absorbing
primary subsemimodule of M .

Proof. First, assume that N is a φ-2-absorbing primary subsemimodule of
M and φ(N) is a 2-absorbing primary subsemimodule of M . Let r, s ∈ R
and x ∈ M with rsx ∈ N . Suppose that neither rx nor sx is in N . Here
two cases arise.

Case I: rsx ∈ φ(N). Then rs ∈
√
(φ(N) :M) ⊆

√
(N :M) because

φ(N) is a φ-2-absorbing primary subsemimodule, φ(N) ⊆ N and rx, sx /∈
N .

Case II: rsx /∈ φ(N). Since N is a φ-2-absorbing primary subsemimod-
ule and rx, sx /∈ N , we obtain rs ∈

√
(N :M).

Conversely, it’s clearly.

LetM be an R-semimodule, N be a Q-subsemimodule ofM . For a func-
tion φ : S(M) −→ S(M)∪{∅} we define the function φN : S(M/N(Q)) −→
S(M/N(Q)) ∪ {∅} by φN (K/N) = φ(K)/N(φ(K)∩Q) if φ(K) 6= ∅, and
φN (K/N) = ∅ if φ(K) = ∅, for every subsemimodule K of M with N ⊆ K.

Theorem 3.14. Let M be an R-semimodule, N a Q-subsemimodule of M
and P, φ(P ) are subtractive subsemimodules of M with N ⊆ P . Then P is
a φ-2-absorbing primary subsemimodule of M if and only if P/N(Q∩P ) is a
φN -2-absorbing primary subsemimodule of M/N(Q).

Proof. First, assume that P is a φ-2-absorbing primary subsemimodule of
M . Then we have P/N(Q∩P ) is a subsemimodule of M/N(Q). Now let
r, s ∈ R and q1 +N ∈M/N(Q) where q1 ∈ Q be such that rs� (q1 +N) ∈
P/N(Q∩P ) \φN (P/N(Q∩P )). Then there existe unique q2 ∈ Q∩P such that
rs� (q1+N) = q2+N where rsq1+N ⊆ q2+N . Since q2 ∈ P and N ⊆ P ,
we have rsq1+N ⊆ P . Since N ⊆ P and P is a subtractive subsemimodule,
rsq1 ∈ P . Since rsq1+N ⊆ q2+N /∈ φN (P/N(Q∩P )), we obtain rsq1+N ⊆
q2 +N /∈ φ(P )/N(Q∩φ(P )). Thus, we have rsq1 = q2 + x for some x ∈ N ⊆
φ(P ). Since q2 /∈ Q ∩ φ(P ), we get q2 /∈ φ(P ). Then rsq1 = q2 + x /∈ φ(P )
because φ(P ) is subtractive. Now, we have rsq1 ∈ P \ φ(P ). Since P is a
φ-2-absorbing subsemimodule of M , it can be concluded that rq1 ∈ P or
sq1 ∈ P or rs ∈

√
(P :M). We claim that r � (q1 + N) ∈ P/N(Q∩P ) or

s� (q1 +N) ∈ P/N(Q∩P ) or rs ∈
√

(P/N(Q∩P ) :M/N(Q).
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Case I: rq1 ∈ P . Since q1 ∈ Q, we have rq1 ∈ Q. Then rq1 ∈ Q∩P . So,
rq1+N ∈ P/N(Q∩P ). Moreover, r�(q1+N) = q3+N where q3 ∈ Q is unique
such that rq1+N ⊆ q3+N . Then rq1 = q3+x1 for some x1 ∈ N ⊆ P . Since
P is subtractive, we have q3 ∈ P . Thus, r� (q1+N) = q3+N ∈ P/N(Q∩P ).

Case II: sq1 ∈ P . We can conclude similarly to Case I that s�(q1+N) ∈
P/N(Q∩P ).

Case III: rs ∈
√

(P :M). Then there exists k ∈ N such that (rs)k ∈
(P : M). So, (rs)kM ⊆ P . Let q + N ∈ M/N(Q) where q ∈ Q. Consider
(rs)k�(q+N) = q4+N where q4 ∈ Q is unique such that (rs)k+N ⊆ q4+N .
So, (rs)kq = q4 + x2 for some x2 ∈ N ⊆ P . Since (rs)k ∈ (P : M),
we have (rs)kq ∈ P . Hence, q4 ∈ P because P is subtractive. Then
q4 ∈ Q ∩ P . Thus, (rs)k � (q + N) = q4 + N ∈ P/N(Q∩P ). Hence, rs ∈√
(P/N(Q∩P ) :M/N(Q).

Therefore, P/N(Q∩P ) is a φN -2-absorbing primary subsemimodule of
M/N(Q).

Conversely, assume that P/N(Q∩P ) is a φN -2-absorbing primary sub-
semimodule of M . Let r, s ∈ R and x ∈ M such that rsx ∈ P \ φ(P ).
Since N is a Q-subsemimodule of M and x ∈ M , we have x ∈ q1 + N
where q1 ∈ Q. So, rsx ∈ rs � (q1 + N). Let rs � (q1 + N) = q2 + N
where q2 is the unique element of Q such that rsq1 + N ⊆ q2 + N . Then
rsx ∈ q2 + N . So there is y ∈ N such that q2 + y = rsx ∈ P . Since
y ∈ N ⊆ P and P is subtractive, we obtain q2 ∈ P . Then q2 ∈ Q ∩ P .
Thus, rs � (q1 + N) = q2 + N ∈ P/N(Q∩P ). Consider rsx /∈ φ(P ) and
y ∈ N ⊆ φ(P ). Since rsx = q2 + y and φ(P ) is subsemimodule, we have
q2 /∈ φ(P ) so that q2 + N /∈ φ(P )/N(Q∩φ(P )) = φN (P/N). Now, we have
rs � (q1 + N) = q2 + N /∈ P/N(Q∩P ) \ φN (P/N). Since P/N(Q∩P ) is a
φN -2-absorbing primary subsemimodule of M/N(Q), we get r � (q1 +N) ∈
P/N(Q∩P ) or s � (q1 + N) ∈ P/N(Q∩P ) or rs ∈

√
(P/N(Q∩P ) :M/N(Q)).

Here three cases arise.

Case I: r � (q1 +N) ∈ P/N(Q∩P ). Then r � (q1 +N) = q2 +N where
q2 is the unique element of Q ∩ P such that rq1 + N ⊆ q2 + N . Thus,
rq1 + N ⊆ q2 + N ⊆ P because N ⊆ P and q2 ∈ Q ∩ P . So, x ∈ q1 + N
that rx ∈ r(q1 +N) ⊆ rq1 +N ⊆ q2 +N ⊆ P . Thus, rx ∈ P .

Case II: s� (q1 +N) ∈ P/N(Q∩P ). We can conclude similarly to Case
I that sx ∈ P .
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Case III: rs ∈
√

(P/N(Q∩P ) :M/N(Q)). Then (rs)k � M/N(Q) ⊆
P/N(Q∩P ) for some k ∈ N. Let m ∈ M . So, there is unique q3 ∈ Q such
that m ∈ q3 +N and (rs)km ∈ (rs)k(q3 +N) ⊆ (rs)k � (q3 +N) = q4 +N
where q4 is the unique element of Q such that (rs)kq3 +N ⊆ q4 +N . Now,
q4 +N = (rs)k � (q3 +N) ∈ P/N(Q∩P ). Then (rs)km ∈ q4 +N ⊆ P . So,
(rs)kM ⊆ P . Thus, (rs)kM ⊆ P . Therefore, rs ∈

√
(P :M).

Hence, P is a φ-2-absorbing primary subsemimodule of M .

Corollary 3.15. Let M be an R-semimodule, N a Q-subsemimodule of M ,
and let P and φ(P ) be subtractive subsemimodules of M with N ⊆ P . If
φ(P ) = N and P is a φ-2-absorbing primary subsemimodule of M , then
P/N(Q∩P ) is a weakly 2-absorbing primary subsemimodule of M/N(Q).

Proof. Since φ(P ) = N , we have φN (P/N) = φ(P )/N = {0}. By The-
orem 3.14, we conclude that P/N(Q∩P ) is a weakly 2-absorbing primary
subsemimodule of M/N(Q).
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