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The Ramsey number R4(3) is not solvable
by group partition means

Chimere Stanley Anabanti

Abstract. The Ramsey number Rn(3) is the smallest positive integer such that colouring
the edges of a complete graph on Rn(3) vertices in n colours forces the appearance of a
monochromatic triangle. A lower bound on Rn(3) is obtainable by partitioning the non-
identity elements of a finite group into disjoint union of n symmetric product-free sets.
Exact values of Rn(3) are known for n 6 3. The best known lower bound that R4(3) > 51

was given by Chung. In 2006, Kramer gave a proof of over 100 pages that R4(3) 6 62.
He then conjectured that R4(3) = 62. We say that the Ramsey number Rn(3) is solvable
by group partition means if there is a finite group G such that |G|+1 = Rn(3) and G\{1}
can be partitioned as a union of n symmetric product-free sets. For n 6 3, the Ramsey
number Rn(3) is solvable by group partition means. Some authors believe that R4(3) not
be solvable by a group partition approach. We prove this here. We also show that any
finite group G whose size is divisible by 3 cannot enjoy G\{1} written as a disjoint union
of its symmetric product-free sets. We conclude with a conjecture that R5(3) > 257.

1. Introduction

Let G be a finite group, and S a non-empty subset of G. Then S is said to
be product-free if S∩SS = ∅. A maximal product-free set in G is a maximal
by cardinality product-free set in G. Let λ(G) denote the cardinality of a
maximal product-free set in G. Suppose T is any product-free set in a finite
group G. For x1 ∈ T , define x1T := {x1x2|x2 ∈ T}. As |x1T | = |T | and
T ∪ x1T ⊆ G, we have that 2|T | 6 |G|; so |T | 6 |G|

2 . This shows that
λ(G) 6 |G|

2 ; i.e., the size of a product-free set in a finite group G is at most
half the size of G.

The value of λ(G) is well-known when G is a finite abelian group, follow-
ing the works of Diananda and Yap [9], as well as Green and Ruzsa [14]. On
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the other hand, the problem of determination of structures and sizes of max-
imal product-free sets in non-abelian groups is still open, although there has
been great progress by many authors, including Kedlaya [17, 18] and Gow-
ers [13]. An interested reader may also see [22, 23, 24, 12, 7, 6, 5, 1, 2, 4, 3]
for works on maximal by inclusion product-free sets.

The Ramsey number Rn(3) is the smallest positive integer such that
colouring the edges of a complete graph on Rn(3) vertices in n colours
forces the appearance of a monochromatic triangle. Exact values of Rn(3)
are known for n 6 3; for instance see [16]. The best known lower bound
that R4(3) > 51 was given by Chung [8] in 1973. Kramer [20], in 2006,
after giving a proof of over 100 pages that R4(3) 6 62, conjectured that
R4(3) = 62. See also [10, 19].

A symmetric product-free set is a product-free set S such that S = S−1.
For a finite group G, it is known that if G∗ (where G∗ = G \ {1}) can be
partitioned into disjoint union of m symmetric product-free sets (SPFS for
short), then Rm(3) > |G|+ 1. Examples by various authors show that the
group partition approach gives a sharp lower bound that coincides with the
exact value of Rm(3) for m 6 3. The main result of this paper is essentially
folklore. Here, we show that the group partition approach cannot be used to
improve the known lower bound of R4(3) to r for 52 6 r 6 62; in particular,
we demonstrate that R4(3) is not solvable by a group partition means. For
the rest of this section, we give the following result.

Theorem 1.1. (Idea from [16, Theorem 1.1] and [24, pp. 247–248]) If G
is a finite group such that G∗ can be partitioned into disjoint union of m
symmetric product-free sets (where m > 2), then Rm(3) > |G|+ 1.

Proof. Suppose G∗ = S1 t · · · t Sm is a disjoint union of m symmetric
product-free sets. We assign to the set Si colour Ci for each i ∈ {1, . . . ,m}.
Let K|G| be the complete graph on |G| vertices: v1, v2, . . . , v|G|. [Note that
the vertices of K|G| are the elements of G.] We m-colour K|G| as follows:
colour the edge vivj (from vi to vj) with colour Ck if viv−1j ∈ Sk. Since Sk
is symmetric (i.e., Sk = S−1k ), this induces a well-defined edge-colouring of
the graph. Let va, vb and vc be any three vertices of K|G| and consider the
triangle on these vertices. Suppose two of its edges say vavb and vbvc are
coloured Ck. This means that vav−1b , vbv

−1
c ∈ Sk. Since Sk is product-free,

we have that (vav
−1
b )(vbv

−1
c ) = vav

−1
c 6∈ Sk. So vavc must be coloured Cl

for l 6= k, and no monochromatic triangle is formed. Therefore Rm(3) >
|G|.
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2. Main results

2.1 A group theoretic motivation

In 1955, Greenwood and Gleason [15] proved that

Rn+1(3) 6 (n+ 1)(Rn(3)− 1) + 2

for n > 1. This result of Greenwood and Gleason tells us that R2(3) 6 6
and R3(3) 6 17. Note that if Rm(3) 6 k, then Theorem 1.1 implies that
for any group G with |G| > k, it is impossible to partition G∗ into m
symmetric product-free sets. Hence, if G∗ is symmetric and product-free,
then |G| 6 2 (and clearly the only example is C2), if G∗ has a partition into
two symmetric product-free sets, then |G| 6 5, and if G∗ has a partition into
three symmetric product-free sets, then |G| 6 16. It is then quick to check
by hand that the only examples of groups G for which G∗ has a partition
into two symmetric product-free sets are C4, C2 × C2 and C5.

We used GAP [11] to observe that there are only four groups G of order
16 such that G∗ has a partition into three symmetric product-free sets. The
groups are C4

2 , C4×C4, (C4×C2)oC2 and C2×D8, with GAP IDs as [16, 14],
[16, 2], [16, 3] and [16, 11] respectively. Each of them when combined with
the result of Greenwood and Gleason tells us that R3(3) = 17. The results
for the two abelian cases (C4

2 and C4 ×C4) are known in the literature; for
instance, see [24].

G An example of a partition of G∗ into dis-
joint union of 3 symmetric product-free
sets

C4
2 = 〈x1, x2, x3, x4| xixj =

xjxi, x
2
i = 1 for 1 6 i, j 6

4〉

{x1, x2, x3, x4, x1x2x3x4} ∪
{x1x2, x1x3, x2x4, x1x2x3, x1x2x4} ∪
{x1x4, x2x3, x3x4, x1x3x4, x2x3x4}

C4 × C4 = 〈x, y| x4 = 1 =
y4, xy = yx〉

{x, x3, y, y3, x2y2} ∪
{x2, xy, x3y3, x2y, x2y3} ∪
{xy3, x3y, y2, xy2, x3y2}

(C4×C2)oC2 = 〈x, y| x4 =
1 = y2, (xyx)2 = 1 =
(yx−1)4, (yxyx−1)2 = 1〉

{y, x, x3, (xy)2, x3yx} ∪
{yx, x2, x2y, x3y, xyx} ∪
{x2yx, xy, yxy, x(xy)2, x2(xy)2}

C2 × D8 = 〈x, y, z| x2 =
1, y2 = 1, z2 = 1, (zx)2 =
1, (zy)2 = 1, (yx)4 = 1〉

{x, y, xz, (xy)2, xyxz} ∪
{xy, z, yx, xyx, yz} ∪
{xyz, yxy, yxz, yxyz, (xy)2z}
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We now end this section with some GAP [11] programs that can be used
to get the table above and investigate more groups.

Program A. This checks whether a set T is product-free

PFTest:=function(T) local x,y; for x in T do for y in T do
if x*y in T then return 1; fi; od; od; return 0; end;

Program B. This gives a partition of G∗ into k product-free sets if such
partition exists

PGk:=function(G,k) local LL, AA, g, P, p, PPk, PPkA, PPP;
LL:=List(G);; AA:=[];; for g in LL do if Order(g)>1 then Add(AA,g);
fi; od; AA:=Set(AA);; PPk:=PartitionsSet(AA,k);; PPkA:=[];;
for P in PPk do for p in P do if PFTest(p)=1 then Add(PPkA,P); fi;
od; od; PPkA:=Set(PPkA);; PPP:=Difference(PPk,PPkA);;
if Size(PPP)>0 then return PPP[1]; else return []; fi; end;

Program C. All groups G of order n such that G∗ has a partition into k
product-free sets

GGnk:=function(n,k) local M, MM, G, GG;
MM:=[];; GG:=AllSmallGroups(n);
for G in GG do M:=PGk(G,k); if Size(M)>0 then Add(MM,[IdGroup(G),M]);
fi; od; return MM; end;

2.2 R4(3) is not solvable by a group partition means

Recall that 51 6 R4(3) 6 62. We say a finite group G is m-partitioned if the
non-identity elements of G can be partitioned into disjoint union of m symmetric
product-free sets. A natural question is whether Chung’s lower bound for R4(3)
can be improved to r for 52 6 r 6 62. We shall use an algorithmic approach to
show that the group partition approach cannot be used to improve Chung’s lower
bound to r for 52 6 r 6 62. We begin with Lemma 2.1 below.

Lemma 2.1. If G is a finite group such that G∗ has a partition into m symmetric
product-free sets (where m > 2), then |G| is not divisible by 3.

Proof. Let G be a finite group such that G∗ =
m⋃
i=1

Si, where m > 2 and each Si is

a symmetric product-free set in G. Suppose for contradiction that |G| is divisible
by 3. Then G has an element of order 3; say x. Without loss of generality, let
x ∈ S1. As S1 is symmetric, x−1 ∈ S1. But x−1 = x2, a contradiction; as S1 is
product-free. Therefore |G| is not divisible by 3.
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We used GAP [11] to observe that there are 56 groups whose sizes are from
51 up to 61; in particular, there are 1, 5, 1, 15, 2, 13, 2, 2, 1, 13 and 1 group(s)
of orders 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 and 61 respectively. In the light
of Lemma 2.1, we discard 31 groups from the list, and only work with 25 groups;
those whose order is one of 52, 53, 55, 56, 58, 59 and 61.

Lemma 2.1 tells us that the group partition approach into symmetric product-
free sets cannot be used to check whether R4(3) is 52. The next result (Theorem
2.2) shows that the group partition approach into SPFS cannot be used to prove
the conjecture of Kramer that R4(3) = 62.

Theorem 2.2. The group of order 61 cannot be 4-partitioned.

Proof. Suppose we 4-colour the edges of K61. Choose any vertex v0 of K61. Sup-
pose we edge join v0 with each of the vertices v1, v2, . . . , vm respectively. Consider
the complete graph Km on those m vertices. If we colour any edge in Km with the
first colour, then we force the appearance of a triangle in the first colour. So we
only colour edges of Km with any of the remaining three colours. As R3(3) = 17,
in order not to have a monochromatic triangle in Km, we have that m 6 16. This
argument shows that the largest size of any symmetric product-free set involved
in any 4-partition of C61 is 16.

The only possibilities of such partition is using SPFS of sizes 16, 16, 16 and
12 or SPFS of sizes 16, 16, 14 and 14. Hence, we only need to work with SPFS of
sizes 12, 14 and 16 in our programs for such partition. Using Program E below, we
see that there are 27060, 13680 and 3975 symmetric product-free sets of sizes 12,
14 and 16 respectively in C61. We then use Program F below to check for either
four SPFS of sizes 16, 16, 16 and 12 whose size of their union is 60 or those of
sizes 16, 16, 14 and 14 whose size of their union is 60, and found none. Therefore
C61 cannot be 4-partitioned.

Remark 2.3. The same reasoning used for the group of order 61 in the proof of
Theorem 2.2 above shows that the maximum size of any of the symmetric product-
free sets in a 4-partition of any of the groups we consider here is 16. We shall use
this repeatedly in our computations.

Algorithm D. This gives all SPFS of respective sizes (up to 16) in a
finite group G

1. For x ∈ G, if o(x) > 2, then select only one element from the pair {x, x−1}. Let
A be a collection of all the selected elements. (In this case, |A| = |G|−1−|InvG|

2 ,
where InvG is the set of all involutions in G.)
2. Form all subsets of A whose sizes are from 1 up to 8. Test for product-freeness
of each subset of A of respective sizes, and make sets Ti consisting of product-free
sets of size i for each i ∈ {1, . . . , 8}.
3. Create a non-empty set Ui for each i ∈ {1, . . . , 8}. For each set M in each Ti,
if the union of M and M−1 is product-free, then add the union to Ui. Repeat
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this for each i ∈ {1, . . . , 8}. Let spf be the collection of all the Ui’s; i.e., spf :=
[U1, U2, . . . , U8], where each Ui consists of all symmetric product-free sets of size
2i; not containing an involution.
4. Let InvG be the set of all involutions in G. Take subsets of sizes 1 up to 16 of
InvG. Test for product-freeness. Let Ispf be the set of all such product-free sets
of respective sizes. Let sprf be an empty set. Check whether the union of any set
in spf and Ispf is product-free. Add all such union which are product-free of size
less than 17 to sprf . Also, add all members of spf and Ispf to sprf . Then sprf
is the set of all SPFS of respective sizes up to 16 in G when |G| is even.

Remark 2.4.
1. We apply only steps 1, 2 and 3 if |G| is odd, and all the steps 1, 2, 3 and 4 if
|G| is even.
2. The motivation for treating the sets of involutions separately is to reduce
computational time; since we know that

(|G|−1
16

)
>
( |G|

2 +3
16

)
, where |G|2 + 3 is the

maximum number of involutions in the groups involved.
3. We used Algorithm above (instead of program) because the actual program
spreads up to 3 pages of the manuscript. An interested reader can request a copy
of the GAP program used. We call the function in Algorithm D, SPFS. It takes
only one input which is a finite group of our choice.

Program E. This gives the number of SPFS of various sizes (up to 16)
in G

SizeSPFS:=function(G) local S,A,i,a; S:=SPFS(G); A:=[];
for i in S do a:=Size(i); if a>0 then Add(A,[Size(i[1]),a]);
fi; od; return A; end;

An example of Program E above is given below.

gap> SizeSPFS(CyclicGroup(61));
[ [ 2, 30 ], [ 4, 405 ], [ 6, 3000 ], [ 8, 12285 ], [ 10, 26166 ],
[ 12, 27060 ], [ 14, 13680 ], [ 16, 3975 ]]

Program F. It decides if G∗ can be partitioned into SPFS of sizes a, b,
c and d

IsPartG:=function(G,a,b,c,d)
local S,Sa,Sb,Sc,Sd,i,j,k,l;
S:=SPFS(G); Sa:=S[a]; Sb:=S[b]; Sc:=S[c]; Sd:=S[d];
for i in Sa do for j in Sb do for k in Sc do for l in Sd do
if Size(Set(Union(i,j,k,l)))=Size(G)-1 then Print([i,j,k,l]); fi;
od; od; od; od; end;
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The next in the sequel is to have an understanding of the number of iterations
we will perform to check all the groups of orders among 52, 53, 55, 56, 58 and 59.

Program G1. This tells us the iterations to perform for each group G
of even order n

ExpMathEven:=function(n)
local A, i,j,k,l,B;
A:=[2..16];; B:=[];;
for i in A do for j in A do for k in A do for l in A do
if i<=j and j<=k and k<=l and i+j+k+l=n-1 then Add(B,[i,j,k,l]); fi;
od; od; od; od; return B; end;

Program G2. This tells us the iterations to perform for each group G
of odd order n

ExpMathOdd:=function(n)
local A, i,j,k,l,B,C;
A:=[2..16];; C:=[];; B:=[];;
for i in A do if IsEvenInt(i) then Add(C,i); fi; od;
for i in C do for j in C do for k in C do for l in C do
if i<=j and j<=k and k<=l and i+j+k+l=n-1 then Add(B,[i,j,k,l]); fi;
od; od; od; od; return B; end;

We now give some examples of Programs G1 and G2. |small

gap> [Size(ExpMathOdd(53)), ExpMathOdd(53)];
[ 9, [ [ 4, 16, 16, 16 ], [ 6, 14, 16, 16 ], [ 8, 12, 16, 16 ],
[ 8, 14, 14, 16 ], [ 10, 10, 16, 16 ], [ 10, 12, 14, 16 ],
[ 10, 14, 14, 14 ], [ 12, 12, 12, 16 ], [ 12, 12, 14, 14 ] ] ]
gap> [Size(ExpMathEven(58)), ExpMathEven(58)];
[ 11, [ [ 9, 16, 16, 16 ], [ 10, 15, 16, 16 ], [ 11, 14, 16, 16 ],
[ 11, 15, 15, 16 ], [ 12, 13, 16, 16 ], [ 12, 14, 15, 16 ],
[ 12, 15, 15, 15 ], [ 13, 13, 15, 16 ], [ 13, 14, 14, 16 ],
[ 13, 14, 15, 15 ], [ 14, 14, 14, 15 ] ] ]

The example above tells us that there are 9 (respectively 11) ways of choos-
ing [a, b, c, d] to be used in Program F, as well as what the possibilities are when
|G| = 53 (respectively |G| = 58).

We now check the total possibilities across all groups of order n, where n ∈
{52, 53, 55, 56, 58, 59}.

A:=[52, 53, 55, 56, 58, 59];; B:=[];; for n in A do
if IsEvenInt(n) then Add(B,NrSmallGroups(n)*Size(ExpMathEven(n)));
else Add(B,NrSmallGroups(n)*Size(ExpMathOdd(n))); fi; od;
gap> B;
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[ 195, 9, 12, 234, 22, 3 ]
gap> Sum(B);
475

We have checked all the 475 trials, and did not find such partition of any of
the groups. By Lemma 2.1 and Theorem 2.2 therefore, no group of order from 51
up to 61 can be 4-partitioned.

2.3 Concluding remarks

In this paper, we have shown that, while R1(3), R2(3) and R3(3) are solvable by
group partition means, the folklore that R4(3) is not solvable by group partition
means is indeed true. It will be interesting to know which Ramsey numbers Rk(3)
are solvable by group partition means for k > 5. An interested reader may see [21,
pp. 42–43] for bounds on Rk(3) for some k > 5. It is known that 162 6 R5(3) 6
307, 538 6 R6(3) 6 1838 and 1682 6 R7(3) 6 12861. We anticipate that R5(3)
is solvable by group partition means. We are motivated by our computer searches
to conjecture that R5(3) > 257, and that the lower bound can be obtained by
partitioning the non-identity elements of a non-cyclic group of order 256 into a
disjoint union of five SPFS.

Acknowledgment. The author is grateful to the anonymous reviewers for their
useful comments.
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A note on comaximal graph and maximal topology
on multiplication le-modules

Sachin Ballal, Sadashiv Puranik and Vilas Kharat

Abstract. In this article, the co-maximal graph Γ(M) on le-modules M has been in-
troduced and studied. The graph Γ(M) consists of vertices as elements of RM and two
distinct elements n,m of Γ(M) are adjacent if and only if Rn + Rm = e. We have
established a connection between the co-maximal graph and the maximal topology on
Max(M) in the case of multiplication le-modules. Also, the Beck’s conjecture is settled
for Γ(M) which does not contain an infinite clique.

1. Introduction

An algebraic structure known as a le-module was introduced and explored
by A.K. Bhuniya and M. Kumbhakar [3, 4, 5]. They were inspired to study
abstract submodule theory, in particular le-module by the study of abstract
ideal theory, particularly multiplicative lattices and lattice modules.

Sharma and Bhatwadekar [10] introduced a graph on elements of com-
mutative ring R with unity by taking vertices as elements of R with two
distinct vertices x and y are adjacent if and only if the addition of ideals
generated by x and y is the whole ring R. They have shown that a commu-
tative ring R is finite if and only if the graph associated with it is finitely
colorable. Also, it is proved that the chromatic number of the graph is the
sum of the number of maximal ideals and the number of units of R.

H.R. Maimani and others [6] studied a subgraph of a graph introduced
in [10]. They studied the connectedness and diameter of the subgraph.

K. Samai [9] studied a subgraph Γ2(R) of Γ(R) introduced in [10] with
non-unit elements of R as a vertex set and obtained ring, graph as well

2010 Mathematics Subject Classification: 06E10, 06E99, 06F99,06B23, 06F25
Keywords: Prime submodule element, radical element, Zariski topology, complete
lattices, le-modules
This research work is an outcome of the project supported by the Institute of Emi-
nence (UoH-I0E-RC5-22-021), University of Hyderabad.
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as the topological properties. Also, investigated the diameter, girth, cycles
and dominating sets of a subgraph Γ2(R).

In [8], Puranik and others studied an associated graph Γ(M) of a le-
module RM with all non-zero proper submodule elements of M as vertices.
Any two distinct vertices n and m are adjacent if and only if their sum is
equal to e, the largest element of RM . Also, the Beck’s conjecture for Γ(M)
is established for coatomic le-modules.

In Section 1 we have recalled the definition of le-module and many con-
cepts from le-modules as well as graph theory. In Section 2, we have settled
Beck’s conjecture for Γ(M) which does not contain an infinite clique. Char-
acterized the subgraph Γ3(M) to be complete bipartite if the number of
maximal elements is exactly 2 and shown that it is n-partite if the num-
ber of maximal elements of M is exactly n. Also, prove that the subgraph
Γ3(M) of Γ(M) is connected with diameter is at most 3. In Section 3, we
have proven that the existence of disjoint closed sets in the maximal spec-
trum ensures the existence of adjacent elements in the co-maximal graph
and vice-versa. Also, it is shown that if the maximal spectrum of multipli-
cation le-modules is Hausdorff, then the diameter of the subgraphs Γ2(M)
and Γ3(M) are at least 3.

Definition 1.1. An le-semigroup (M,+,6, e) is a commutative monoid
with the zero element 0M and is a complete lattice with the greatest element
e, that satisfies m + (∨i∈Imi) = ∨i∈I(m + mi). Then M is called an le-
module over a commutative ring R with unity 1R if there is a mapping
: R×M →M satisfying:

1. r(m1 +m2) = rm1 + rm2

2. (r1 + r2)m 6 r1m+ r2m

3. (r1r2)m = r1(r2m)

4. 1Rm = m ; 0Rm = r0M = 0M

5. r(∨i∈Imi) = ∨i∈I(rmi) holds for all r, ri ∈ R, m,mi ∈ M and i ∈ I
(I is an indexed set).

An element n ∈M is said to be a submodule element if n+n, rn 6 n for
all r ∈ R. The set of all submodule elements of M is denoted by Sub(M).

Observe that if n,m ∈ Sub(M) then n + m ∈ Sub(M), rn ∈ Sub(M),
n ∧ m ∈ Sub(M) and n + n = n. Let M be an le-module, n ∈ M and
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I be an ideal in R. Then In = ∨{
∑k

i=0 rin : k ∈ N; ri ∈ I}. If for each
n ∈ Sub(M), n = Ie for some ideal I of R, then the le-module M is
known as a multiplication le-module. An element m ∈ Sub(M) is said to
be maximal if m < n for some n ∈ Sub(M) implies n = e. The set of
all maximal elements of M is denoted by Max(M). If l ∈ Sub(M) and
n ∈M , then (l : n) = {r ∈ R : rn 6 l} is an ideal in R. If t ∈ Sub(M) then
Ann(t) = {r ∈ R : rt = 0}. Note that Ann(t) is an ideal in R. We define
radical of an le-module M as Rad(M) = ∧m∈Max(M)m.

A graph G is the pair (V (G);E(G)), where V (G) is the vertex set and
E(G) is the edge set. The degree of a vertex n is denoted by deg(n) and
is equal to the number of edges incident on n. In G, the distance between
two distinct vertices n and m, denoted by d(n;m) is the length of the
shortest path between n and m. The diameter of a graph G is given by
diam(G) = sup{d(n;m)|n,m ∈ V (G)}. Graph G is called connected, if
there is a path between any two vertices of G. The length of the shortest
cycle in G is called the girth of G. A graph is called complete if each pair
of vertices in G is adjacent. A complete r − partite graph is one in which
each vertex is joined to every other vertex not in the same subset. A clique
of a graph is its maximal complete subgraph and the number of vertices
in the largest clique of a graph G, denoted by ω(G), is called the clique
number of G. The minimum n for which a graph G is n-colorable is called
the chromatic number of G, and is denoted by χ(G).

Proposition 1.2. (cf. [5]) Let M be an le-module and I be an ideal of
R. Then In ∈ Sub(M) for all n ∈ M and Rn is the smallest element of
Sub(M) covering n i.e. if l ∈ Sub(M) and n 6 l, then n 6 Rn 6 l.

In particular, Rn = n for all n ∈ Sub(M).

Proposition 1.3. Let M be a multiplication le-module. If m ∈ Max(M)
and n1, n2, . . . , nm ∈ Sub(M) such that (∧λnλ) 6 m, then there exist some
λ such that nλ 6 m.

2. Comaximal graph of multiplication le-modules

LetM be an le-module and let Γ(M) consist of vertices as elements ofM and
two distinct elements n,m of Γ(M) are adjacent if and only if Rn+Rm = e.
We denote U(M) = {n ∈M |Rn = e}.

The following theorem shows that the Beck’s conjecture is true for Γ(M)
which does not contain infinite clique.
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Theorem 2.4. Let M be an le-module. If Γ(M) does not contain infinite
clique, then χ(Γ(M)) = ω(Γ(M)) = t + s, where t = |U(M)| and s =
|Max(M)|.

Proof. Note that |U(M)| and |Max(M)| are finite, otherwise Γ(M) contains
infinite clique. Suppose that U(M) = {n1, n2, . . . , nt} and Max(M) =
{m1,m2, . . . ,ms}. Then C = U(M) ∪Max(M) is a clique in Γ(M). Then
χ(Γ(M)) ≥ t + s. Let V1 = {m ∈ M |m 6 m1} and for i = 1, 2, . . . , s;Vi =
{m ∈ M |m 6 mi but m 
 mj for j = 1, 2, . . . , i − 1}. Then M = U(M) ∪
V1∪V2∪ . . .∪Vs is a disjoint union of sets. Define f : M → {1, 2, . . . , t+ s}
as f(ni) = i where ni ∈ U(M) and f(vj) = t + j where vj ∈ Vj for j =
1, 2, . . . , s. If k1, k2 ∈ M with k1 6= k2 and Rk1 + Rk2 = e implies f(k1) 6=
f(k2). Thus the map f gives colouring implies χ(Γ(M)) = t+ s.

In [10] Sharma and Bhatwadekar have shown that, every ring without
infinite clique is finite. But the following example illustrates that even an
infinite le-module can have a finite clique.

Example 2.5. Let M = {ai|i ∈ N} ∪ {bi|i ∈ N} ∪ {0, e} is a le-module
over Z2 with + as ai + aj = a1, bi + bj = b1 and ai + bj = e and scalar
multiplication is 0x = 0 and 1x = x for all x ∈ M. By Proposition 1.2,
each ai is adjacent to each bj , because Rai +Rbj = a1 + b1 = e.
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Figure 1 : Lattice of M.
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Figure 2 : Γ(M)− Comaximal graph of M.

Here Sub(M) = {a1, b1} and we have only 2 vertices clique because ai
is not adjacent to aj and bi is not adjacent to bj for any i, j ∈ N.

We consider subgraph Γ2(M) with the vertex set {n ∈M |n /∈ U(M)}.

Theorem 2.6. The graph with the vertex set U(M) is complete. Moreover,
m 6 Rad(M) if and only if degΓ2(m) = 0, where degΓ2(m) is a degree of
M in a subgraph Γ2(M).
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Proof. 1. Letm1,m2 ∈ U(M). Then Rm1 = e and Rm2 = e. Consequently,
Rm1 +Rm2 = e and hence every pair of elements of U(M) are adjacent.
2. Let m 6 Rad(M), which implies m 6 mi for all mi ∈ Max(M). If
degΓ2(m) 6= 0, then there exists n ∈ Γ2(M) such that Rn+Rm = e. Now,
there exists mj ∈ Max(M) such that n 6 mj . Therefore by Proposition
1.2, we have Rn+Rm 6 Rmj+Rmj = mj+mj = mj 6= e, a contradiction.
Hence degΓ2(m) = 0.

Conversely, suppose that degΓ2(m) = 0. If m 
 Rad(M), then there
exists mj ∈Max(M) such that m 
 mj . Thus Rm+mj = Rm+Rmj = e,
a contradiction to degΓ2(m) = 0.

We consider subgraph Γ3(M) with the vertex set
{n ∈M |n /∈ U(M) and n 
 Rad(M)}.

Theorem 2.7. Let M be an le-module. Then Γ3(M) is a complete bipartite
if and only if |Max(M)| = 2.

Proof. Let Max(M) = {m1,m2}. Then the vertex set of Γ3(M) = V1 ∪ V2,
where

V1 = {m|m 6 m1 and m 
 m2} and V2 = {m|m 6 m2 and m 
 m1}.
Now for n1 ∈ V1 and n2 ∈ V2 we have Rn1 
 m2 and Rn2 
 m1. Hence
Rni 6 Rn1 + Rn2 
 mi for i = 1, 2. But Rn1 + Rn2 ∈ Sub(M) and which
implies Rn1 +Rn2 = e. Therefore Γ3(M) is a complete bipartite.

Conversely, suppose that Γ3(M) is a complete bipartite with V1 and V2

are two parts. Let m1 = ∨{vi1 |vi1 ∈ V1} and m2 = ∨{vi2 |vi2 ∈ V2}. We
first prove that m1 ∈ V1. Otherwise, we have following two cases: Let
vi1 , vj1 ∈ V1.

1. If vi1∨vj1 ∈ U(M), then R(vi1∨vj1) = e. Now vi1∨vj1 6 vi1 +vj1 implies
R(vi1 ∨ vj1) 6 R(vi1 + vj1) = R(vi1) + R(vj1). Therefore R(vi1 ∨ vj1) = e
implies R(vi1) +R(vj1) = e, a contradiction.
2. If vi1 ∨ vj1 ∈ V2, then R(vi1) + R(vi1 ∨ vj1) = e. Now vi1 ∨ vj1 6
vi1 + vj1 implies R(vi1 ∨ vj1) 6 R(vi1 + vj1) = R(vi1) + R(vj1). Therefore
R(vi1) + R(vi1 ∨ vj1) = e implies R(vi1) + R(vi1) + R(vj1) = e. Therefore,
R(vi1) +R(vj1) = e, a contradiction.

Hence m1 ∈ V1 and similarly we have m2 ∈ V2. Since m1 ∈ V1, we have
Rm1 6= e and also Rm1 + Rvi1 = Rm1 6= e implies Rm1 /∈ V2. Similarly
we have Rm2 /∈ V1. If n ∈ Max(M) then n 6 m1 or n 6 m2. Otherwise
Rn+Rm1 = e and Rn+Rm2 = e, which is a contradiction to Γ3(M) is a
complete bipartite.
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Proposition 2.8. Let M be an le-module and n > 1.

1. If |Max(M)| = n <∞, then Γ3(M) is an n-partite.

2. If Γ3(M) is an n-partite, then |Max(M)| 6 n and if Γ3(M) is not an
(n− 1)-partite, then |Max(M)| = n.

Proof. 1. Let Max(M) = {m1,m2, . . . ,mn}. Take V1 = {m ∈ Γ3(M)|m 6
m1} and Vi = {m ∈ Γ3(M)|m 6 mi and m 
 mj for j = 1, 2, . . . , i − 1}
for i = 2, 3, . . . , n. If mi1 ,mi2 ∈ Vi, then Rmi1 + Rmi2 6 Rmi + Rmi =
mi + mi = mi < e. Thus mi1 and mi2 are not adjacent. Similarly no two
elements of V1 are adjacent. Therefore, Γ3(M) is n-partite.

2. Suppose that Γ3(M) is n−partite graph. Let V1, V2, . . . , Vn be the n parts
of vertices of Γ3(M). Suppose that |Max(M)| > n. Let {m1,m2, . . . ,mn+1}
⊆ Max(M). Let ti 6 mi but ti 
 mj for i 6= j. Note that Rti + Rtj >
ti, tj . If Rti + Rtj 6= e then Rti + Rtj 6 mk for some mk ∈ Max(M).
Therefore ti, tj 6 mk, a contradiction. Hence Rti + Rtj = e. Therefore
{t1, t2, . . . , tn+1} is a clique in Γ3(M). As we have V1, V2, . . . Vn are n parts
of vertices of Γ3(M) and {t1, t2, . . . , tn+1} is a clique in Γ3(M), by the
Pigeonhole principle two ti ∈ Vi for some i, a contradiction. Therefore
|Max(M)| 6 n.

Now, if Γ3(M) is not (n− 1)-partite and if |Max(M)| = s < n, then by
part (1), Γ3(M) is s-partite, a contradiction. Hence |Max(M)| = n.

Theorem 2.9. Let M be a multiplication le-module and |Max(M)| > 2. If
Γ3(M) is a complete n-partite, then n = 2.

Proof. Suppose that Γ3(M) is a complete n-partite. Form1,m2 ∈Max(M),
let V1 = {m ∈ Γ3(M)|m 6 m1 and m 
 m2} and V2 = {m ∈ Γ3(M)|m 6
m2 and m 
 m1}. Observe that the elements of Vi are not adjacent
for i = 1, 2 and every element of V1 is adjacent to each element of V2.
Since Γ3(M) is a complete n-partite graph implies V1 and V2 are two
parts of Γ3(M). Now, we claim that Rad(M) = m1 ∧ m2. Suppose that
Rad(M) < m 6 m1 ∧m2 for some m ∈M . This implies m is not adjacent
to any element of V1 and of V2. This is contradiction to Γ3(M) is complete
n-partite. Therefore Rad(M) = m1 ∧m2 and for any m3 ∈ Max(M), we
have m1 ∧m2 ∧m3 = m1 ∧m2. Which implies m1 ∧m2 6 m3. Then by
Propostion 1.3, we have m1 6 m3 or m2 6 m3. As m1,m2,m3 ∈Max(M),
implies m1 = m3 or m2 = m3 and therefore |Max(M)| = 2. Hence by
Theorem 2.7, Γ3(M) is a complete bipartite.
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Theorem 2.10. If M is a multiplication le-module, then Γ3(M) is con-
nected and diam(Γ3(M)) 6 3.

Proof. Let n, l ∈ Γ3(M). Then we consider the following two cases:

1. Suppose that n ∧ l 
 Rad(M). Then n ∧ l 
 m for some m ∈Max(M).
Hence, R(n∧l)+Rm = e and which implies Rn+Rm = e and Rl+Rm = e.
Therefore n−m− l is a path and so d(n,m) 6 2.

2. Suppose that n∧l 6 Rad(M). Let Sn = {m ∈Max(M)|n 6 m} and Sl =
{m ∈ Max(M)|l 6 m} implies Max(M) = Sn ∪ Sl. Because if there exist
m0 ∈ Max(M) such that m0 /∈ Sm and m0 /∈ Sn, then n ∧ l 6 m0 implies
Rn∧Rl 6 m0. Suppose n is adjacent to t in Γ2(M). Then t 
 Rad(M). If
n 6 m1, then t 
 m1 and so t 6 m2 for some m2 ∈ Sl − Sn. If Rt ∧ Rl 6
Rad(M) then by Proposition 1.3, Rt 6 Rad(M) or Rl 6 Rad(M). But l 

m for some m ∈ Sn implies Rl 
 m for some m ∈ Sn and thereforeRl 

Rad(M). Similarly Rt 
 Rad(M). Hence Rt ∧ Rl 
 Rad(M). Therefore
by Case(i), there exists a path between Rt and Rl and d(Rt,Rl) 6 2.
Suppose Rt−m−Rl is a path for some m ∈M and hence n−Rt−m− l
is a path between n and l. Consequently, d(n, l) 6 3.

3. Maximal spectrum and comaximal graph

In [5], Kumbhakar and Bhuniya, studied the Zariski topology on le-modules.
They have defined V (n) = {p ∈ Spec(M)|n 6 p} and V ∗(n) = {p ∈
Spec(M)|(p : e) ⊆ (n : e)} for n ∈ Sub(M). If M is a multiplication
le-module, then {V (n)|n ∈ Sub(M)} forms the Zarisky topology of closed
sets on the prime spectrum Spec(M).

Throughout this section, M denotes a multiplication le-module unless
otherwise stated.

Here, we consider Max(M) = {m ∈ Sub(M)|m is maximal element} as
a subset of Spec(M) = {p ∈ Sub(M)|p is prime element} with the subspace
topology.

Thus, if M(t) = {m ∈Max(M)|t 6 m}, then T = {M(t)|t ∈ Sub(M)}
forms a basis of closed subsets on Max(M).

Lemma 3.11. LetM be a multiplication le-module. If A and B are disjoint
closed subsets of Max(M), then there exist t1, t2 ∈ Sub(M) such that A =
M(t1), B = M(t2) and Rt1 +Rt2 = e. Also if A is closed and open set, then
there exist t1, t2 ∈ Sub(M) such that Rt1 +Rt2 = e and t1 ∧ t2 6 Rad(M).
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Proof. If A and B are closed sets implies there exist t1, t2 ∈ Sub(M) such
that A = M(t1), B = M(t2). We have t1 6 Rt1, t2 6 Rt2 and therefore
t1 6 Rt1 +Rt2 and t2 6 Rt1 +Rt2. If Rt1 +Rt2 6= e, then such that Rt1 +
Rt2 6 m for some m ∈ Max(M). But t1, t2 6 Rt1 + Rt2 6 m and
this implies m ∈ M(t1) ∩M(t2) = A ∩ B, a contradiction. Consequently
Rt1 +Rt2 = e.

Now, if A is both closed and open, then A and Ac are closed sets.
Therefore by above argument there exist t1, t2 ∈ Sub(M) such that A =
M(t1), Ac = M(t2) and Rt1+Rt2 = e. Now we have t1 6 m1 for all m1 ∈ A
and t2 6 m2 for all m2 ∈ Ac. This implies t1 ∧ t2 6 m1 for all m1 ∈ A and
t1 ∧ t2 6 m2 for all m2 ∈ Ac. Therefore t1 ∧ t2 6 m for all m ∈ Max(M).
This implies t1 ∧ t2 6 Rad(M).

Remark 3.12. The existence of disjoint closed subsets in the maximal
spectrum gives the existence of adjacent elements in the comaximal graph.

Proposition 3.13. Let n1, n2, n3 ∈ Γ3(M) be distinct elements and let
D(t) = Max(M)/M(t). Then

(1) n1 is adjacent to n2 and n3 if and only if M(Rn1) ⊆ D(Rn2∧Rn3).

(2) d(n1, n2) = 1 if and only if M(Rn1) ∩M(Rn2) = ∅.
(3) d(n1, n2) = 2 if and only if M(Rn1)∩M(Rn2) 6= ∅ and Rn1∧Rn2 


Rad(M).

(4) d(n1, n2) = 3 if and only if M(Rn1)∩M(Rn2) 6= ∅ and Rn1∧Rn2 6
Rad(M).

Proof. (1). Suppose that M(Rn1) ⊆ D(Rn2 ∧ Rn3). This implies Rn1 +
(Rn2 ∧Rn3) = e. Therefore, Rn1 +Rn2 = e and Rn1 +Rn3 = e. Thus n1

is adjacent to both n2 and n3.

Conversely, suppose that n1 is adjacent to both n2 and n3. Therefore
Rn1 +Rn2 = e and Rn1 +Rn3 = e, which implies M(Rn1) ∩M(Rn2) = ∅
and M(Rn1) ∩M(Rn3) = ∅. On contrary, if there exist m ∈ M(Rn1) and
m /∈ D(Rn2 ∧Rn3), then Rn2 ∧Rn3 6 m, and by Proposition 1.3, we have
Rn2 6 m or Rn3 6 m. Hence we have m ∈ M(Rn2) or m ∈ M(Rn3) and
consequently m /∈M(Rn1), a contradiction.

(2). d(n1, n2) = 1 if and only if Rn1 +Rn2 = e if and only if M(Rn1)∩
M(Rn2) = ∅.

(3). Suppose that,d(n1, n2) = 2.Which implies Rn1 +Rt = e and Rn2 +
Rt = e for some t ∈M . Note that t is adjacent to both n1 and n2 and hence
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by (i) above we have M(Rt) ⊆ D(Rn1 ∧ Rn2). Thus m ∈ M(Rt) implies
m /∈ M(Rn1 ∧ Rn2). Hence Rn1 ∧ Rn2 
 Rad(M). Conversely, suppose
that M(Rn1) ∩M(Rn2) 6= ∅ and Rn1 ∧Rn2 
 Rad(M). Thus there exists
m ∈Max(M) such that Rn1 ∧Rn2 
 m implies Rn1 +m = Rn1 +Rm =
e and Rn2 +m = Rn2 +Rm = e. Therefore n1 −m− n2 is a shortest path
and which implies d(n1, n2) = 2.

(4) Follows from (2), (3) and Theorem 2.10.

Theorem 3.14. Let M be a multiplication le-module with Max(M) is
Hausdorff. Then diam(Γ3(M)) = min{|Max(M)|, 3}. If |Max(M)| = 2,
then gr(Γ3(M)) = 4 or ∞ otherwise gr(Γ3(M)) = 3.

Proof. First we prove that |Max(M)| > 3 if and only if diam(Γ3(M)) = 3.
Suppose that |Max(M)| > 3 and m1,m2,m3 are distinct maximal elements
in M . Since Max(M) is Hausdorff, there are ti ∈ Sub(M) such that mi ∈
D(ti) and D(ti) ∩D(tj) = ∅ for i 6= j. Thus D(ti) ⊆ M(tj) for i 6= j. Now
D(ti)∪M(ti) = Max(M) impliesM(ti)∪M(tj) = Max(M). Hence ti∧tj 6
m for all m ∈Max(M) implies ti∧tj 6 Rad(M). Nowm3 ∈M(t1)∩M(t2)
implies M(t1)∩M(t2) 6= ∅. Therefore by the Proposition 3.13, d(t1, t2) = 3
implies diam(Γ3(M)) = 3.

Conversely, suppose that diam(Γ3(M)) = 3.On contrary if |Max(M)| <
3, then either |Max(M)| = 1 or 2. The case |Max(M)| = 1 is not pos-
sible, because then Γ3(M) will contain only one vertex, a contradiction to
diam(Γ3(M)) = 3. Now suppose that Max(M) = {m1,m2} and for ver-
tices n1, n2 we have d(n1, n2) = 3. Hence there are vertices t1, t2 such that
n1 − t1 − t2 − n2 is a shortest path between n1 and n2. If n1 6 m1 then
t1 6 m2 implies t2 6 m1 and hence n2 6 m2. This gives a contradiction,
because n1 and n2 are not adjacent. Similarly n2 6 m2 is not possible.
Therefore |Max(M)| > 3.

Now let |Max(M)| = 2. Then Max(M) = {m1,m2} and Max(M)
is Hausdorff implies there exist t1, t2 ∈ Sub(M) with M(t1) = {m1} and
M(t2) = {m2}. Therefore, we have t1 + t2 = Rt1 +Rt2 = m1 +m2 = e and
we have shortest cycle of length 4 namely t1−t2−m1−m2−t1. If t1, t2, t3 ∈
Γ3(M), then by the Pigeonhole Principle at least two of them 6 m1 or m2.
Therefore there is no triangle in Γ3(M). If |Mm1 | = 2 or |Mm2 | = 2 then
t 6 m1 implies t = 0 or t = m1 for |Mm1 | = 2. Hence in this case we have
no cycle implies gr(Γ3(M)) =∞.

Corollary 3.15. Let M be a multiplication le-module with Max(M) is
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Hausdorff. Then diam(Γ2(M)) = min{|Max(M)|, 3}. If |Max(M)| = 2,
then gr(Γ2(M)) = 4 or ∞ otherwise gr(Γ2(M)) = 3.
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On the nonexistence of certain associative subloops
in the loop of invertible elements

of the split alternative Cayley-Dickson algebra

Evgenii L. Bashkirov

Abstract. Let O(k) be the octonion Cayley–Dickson algebra over a commutative
associative ring k with 1. Let G(k) be the Moufang loop of invertible elements of O(k).
Let H be a class of groups such that a group G is a member of H if and only if G satisfies
the following three conditions: (a) G is not class-2 nilpotent. (b) G has a proper class-2
nilpotent subgroup. (c) G is not isomorphic to any subgroup of the group GL2(F ) for
any field F . The theorem proved in the paper states that if k is an integral domain with
1+1 6= 0, then G(k) does not contain any subloop isomorphic to a group of class H, while
if k is an integral domain such that 1+1 = 0, then G(k) contains no subloop isomorphic
to a class-2 nilpotent group at all.

Let G(k) denote the loop of invertible elements in the split alternative
Cayley-Dickson algebra over a field k. If the characteristic of k is not 2,
then G(k) has a subloop isomorphic to the group UT3(k) of all 3× 3 upper
unitriangular matrices over k ([1]). A natural question arises then, namely,
whether G(k) contains a subloop isomorphic to a group which is, in a sense,
more larger than UT3(k). The present paper answers this question, actually,
in the negative using as a working tool a class of groups that contain a class-2
nilpotent group as a proper subgroup. More precisely,

Definition. A group G belongs to the class H if and only if G satisfies the
following three conditions:

(a) G is not class-2 nilpotent.

2010 Mathematics Subject Classification: 20N05, 17D05, 20F18
Keywords: Moufang loops, Alternative algebras, Nilponent groups
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(b) G has a proper class-2 nilpotent subgroup.

(c) G is not isomorphic to any subgroup of the group GL2(F ) for every
field F .

The main purpose of the paper is to prove the following theorem which
demonstrates, in particular, a distinction between the case involving fields
of characteristic not 2 and that in which fields of characteristic 2 appear.

Theorem 1. Let k be an associative and commutative integral domain with
1, O(k) the alternative split Cayley-Dickson algebra over k and G(k) a
Moufang loop of invertible elements in O(k).

(i) If 1 + 1 6= 0, then the loop G(k) does not contain any subloop isomor-
phic to a group of class H.

(ii) If 1 + 1 = 0, then the loop G(k) contains no subloop isomorphic to a
class-2 nilpotent subgroup.

Before exposing proof of the theorem a notational system will be estab-
lished.

Let k be a commutative associative ring with 1. Then k∗ is the multi-
plicative group of all invertible elements of k.

If a ∈ k and S, T ⊆ k, then aS = {as | s ∈ S} and S + T = {s+ t | s ∈
S, t ∈ T}.

Let n be an integer, n > 2. Then Mn(k) is the associative ring of n× n
matrices with entries in k. As usual, GLn(k) denotes the group Mn(k)∗,
the general linear group of degree n over k.

If 1n is the identity matrix of degree n and a ∈ k, then tij(a) denotes
the matrix 1n + aeij , where eij is the n× n matrix which has 1 in its (i, j)
position and zeros elsewhere. If S ⊆ k, then tij(S) = {tij(a) | a ∈ S}.

k3 is the standard free k-module formed by column vectors of length 3
with components in k. The elements1

0
0

 ,
0

1
0

 ,
0

0
1


of k3 are denoted by e1, e2, e3, respectively. The zero element of k3 is des-
ignated as 0.

If α, β ∈ k3, then α ·β and α×β denote the usual dot product and cross
product, respectively.
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O(k) is the set of all symbols of the form ( a αβ b ) with a, b ∈ k, α, β ∈ k3.
In O(k), equality, addition and multiplication by elements of k are defined
componentwise, whereas the operation of multiplication is given by(

a α
β b

)(
c γ
δ d

)
=

(
ac+ α · δ aγ + αd− β × δ

βc+ bδ + α× γ β · γ + bd

)
,

a, b, c, d ∈ k, α, β, γ, δ ∈ k3.

Under the operations just defined O(k) is an alternative nonassociative
k-algebra termed the split Cayley-Dickson algebra (or the octonion one).
Elements of O(k) are called octonions.

To avoid a proliferation of symbols, it is convenient to adopt the follow-
ing convention. The symbol 12 is used to denote the identity of the algebra
O(k), (

1 0
0 1

)
,

as well as the identity 2×2 matrix. Also the symbol 02 is used to designate
two things: the zero octonion (

0 0
0 0

)
and the zero 2 × 2 matrix. The convention should lead to no ambiguity if
one attends closely to the context in which the notation is employed.

The trace tr(x) and the norm n(x) of the octonion

x =

(
a α
β b

)
∈ O(k)

are defined to be a+ b and ab− α · β, respectively.
G(k) is the (Moufang) loop of octonions of O(k) whose norms lie in k∗.

The norm n determines the bilinear form (x, y) = n(x+y)−n(x)−n(y) on
the k-module O(k). Throughout the article, all metric concepts mentioned
are related to the bilinear form (x, y) determined by the norm mapping
n : O(k)→ k. In particular, if Y ⊆ O(k), then the orthogonal complement
Y ⊥ is defined to be the set {x ∈ O(k) | (x, y) = 0 for all y ∈ Y }.

The algebra O(k) admits an involution ¯: O(k)→ O(k) given by

x̄ =

(
b −α
−β a

)
, whenever x =

(
a α
β b

)
a, b ∈ k, α, β ∈ k3.
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Borrowing the notation from the theory of algebraic groups, the auto-
morphism group of the algebra O(k) is denoted by G2(k).

Let UT (k) and ZUT (k) be the subloops of G(k) defined by

UT (k) =

{(
1 a2e1

a3e2 + a4e3 1

) ∣∣∣∣ ai ∈ k} ,
ZUT (k) =

{(
a1 a2e1

a3e2 + a4e3 a1

) ∣∣∣∣ a1 ∈ k∗, a2, a3, a4 ∈ k} ,
and let N0(k) and N(k) be the subgroups of GL3(k) such that

N0(k) =


r 2a b

0 r c
0 0 r

∣∣∣∣ r ∈ k∗, a, b, c ∈ k
 ,

N(k) =


1 2a b

0 1 c
0 0 1

∣∣∣∣ a, b, c ∈ k
 .

A direct calculation shows that the restriction of multiplication in O(k)
to ZUT (k) is associative, and since UT (k) ⊆ ZUT (k), this is true also for
UT (k). Moreover, the mapping η : ZUT (k)→ N0(k) defined by

(
a1 a2e1

a3e2 + a4e3 a1

)
7→

a1 2a3 a3a4a
−1
1 − a2

0 a1 a4
0 0 a1

 ,

satisfies for all x, y ∈ ZUT (k) the condition (xy)η = xηyη, where the mul-
tiplication on the right-hand side is performed in the group GL3(k). This
means that η is a group homomorphism from ZUT (k) onto N0(k). The
kernel of η is isomorphic to the subgroup k[2] of the additive group of k
formed by all a ∈ k with 2a = 0. Thus N0(k) is isomorphic to the quotient
ZUT (k)/k[2] and the restriction of η to UT (k) determines an isomorphism
of UT (k)/k[2] onto N(k). If 2 ∈ k∗, then k[2] = 0, 2k = k, and hence
ZUT (k) is isomorphic to the direct product k∗ × UT3(k) of the groups k∗

and UT3(k), whereas UT (k) ∼= UT3(k).
IfX is a group and x, x1 ∈ X, then xx1 = x−1x1x,

xx1 = xx1x
−1, [x1, x] =

x−11 xx1 . If R ⊆ X, then xR = { xr | r ∈ R}.
If X is a loop and M is a subset of X, then 〈M〉 denotes the subloop of

X generated by M .
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A series of auxiliary results must be established before giving a direct
proof of Theorem 1. The first of these is concerned with the following
situation related to general alternative algebras.

Let k be a field of characteristic 6= 2 and L an alternative k-algebra with
1. Choose a1, a2, a ∈ k and suppose that L contains elements y1, y2 such
that

y21 = a1, y22 = a2, y1y2 + y2y1 = a. (1)

It is straightforward to check that the subspace A = k + ky1 + ky2 + ky1y2
of the k-vector space L is a subalgebra of L which is denoted as(a1, a2, a

k
, y1, y2

)
. (2)

A description of noncommutative algebras (2) is a constituent of the proof of
Theorem 1. Certainly, some parts of this description can be extracted from
the usual classification of quaternion algebras exposed, for example, in [2],
pp. 13–20. However, the full list of subalgebras (2) can not be given within
the framework of [2] (mainly, due to the fact that the case a1a2 = a = 0 is
excluded in [2]). Therefore, it is desirable to have, at least as a sketch, an
argument leading to a full description of subalgebras (2). This is done in
Lemma 1 below. The proof of that lemma requires, in turn, the following
notations in which some algebras of 2× 2 matrices appear.

If x0, x1, x2 are indeterminates and b, c ∈ k are such that the quadratic
form x20 − x21b− x22c does not represent zero in k, then

D(b, c, k) =

{(
r0 + r1

√
b r2 + r3

√
b

c(r2 − r3
√
b) r0 − r1

√
b

) ∣∣∣∣ ri ∈ k} .
In other words, D(b, c, k) is the quaternion division algebra

(
b,c
k

)
realized

by matrices of degree 2 over the field k(
√
b).

If b ∈ k is not a square in the field k, then

T0(k(
√
b)) =

{(
r0 + r1

√
b r2 + r3

√
b

0 r0 − r1
√
b

) ∣∣∣∣ ri ∈ k} .
Finally, T (k) denotes the k-algebra of 2× 2 upper triangular matrices over
k:

T (k) =

{(
a b
0 c

) ∣∣∣∣ a, b, c ∈ k} .
Now the above mentioned description runs as follows.
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Lemma 1. Let k be a field of characteristic not 2, L an alternative algebra
over k with 1, and a1, a2, a ∈ k. Suppose that L contains elements y1, y2
satisfying (1) and let A be the subalgebra of L defined by (2). Suppose that
A is noncommutative. Then one of the following holds:

(i) A ∼= M2(k).

(ii) A ∼= D(b, c, k), where the quadratic form x20 − x21b − x22c in x0, x1, x2
does not represent 0 in k.

(iii) A ∼= T0(k(
√
b)), where b is not a square in k.

(iv) A ∼= T (k).

(v) dimk A = 4 and A ∼=
(
1,0,0
k , z1, z2

)
for some z1, z2 ∈ L.

(vi) A ∼=
(
0,0,0
k , z1, z2

)
for some z1, z2 ∈ L.

Proof. Part one. Consider first the case a = 0. There are the following
three possibilities for a1:

(a) a1 is not a square in k,

(b) a1 is a nonzero square in k,

(c) a1 = 0.

The corresponding possibilities exist for a2 and exchanging, if necessary,
y1 and y2, one obtains the following six possibilities for the ordered pair
(a1, a2):

(1) Both a1, a2 are not squares in k.

(2) a1 is not a square in k, a2 is a nonzero square in k.

(3) a1 is not a square in k, a2 = 0.

(4) Both a1, a2 are nonzero squares in k.

(5) a1 is a nonzero square in k, a2 = 0.

(6) a1 = a2 = 0.
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These cases are considered separately.
(1) Here dimk A = 4 and A is a quaternion algebra in the sense of [2], p.

14. So A is either a division algebra and A ∼= D(a1, a2, k) or A ∼= M2(k).
(2) Again A is a quaternion algebra, and since a2 is a square in k∗, A ∼=

M2(k).
(3) In this case, dimk A = 4 and A ∼= T0(k(

√
a1)).

(4) Here again A is a quaternion algebra, A being isomorphic to M2(k).
(5) In this case, the following two possibilities arise for the dimension of A

over k: this dimension is equal either to 3 or to 4. If dimk A = 3, then
A ∼= T (k). If dimk A = 4, then setting z1 = y1b

−1
1 , where a1 = b21, b1 ∈ k,

and z2 = y2, one obtains A ∼=
(
1,0,0
k , z1, z2

)
.

(6) Here A corresponds to the algebra listed in (vi).

Part two. Now consider the case a 6= 0. If, under this assumption,
a1 = a2 = 0, then dimk A = 4 and the correspondence y1 7→ ( 0 1

0 0 ) , y2 7→
( 0 0
a 0 ) determines an isomorphism of A upon M2(k). If (a1, a2) 6= (0, 0),

then exchanging, if necessary, y1 and y2, one may suppose that a1 6= 0 and

A =

(
a1, a1(−1 + 4a1a2a

−2), 0

k
, y1, y1 − 2a1a

−1y2

)
.

In particular, if a2 = 0, then A ∼= M2(k). If both a1, a2 are nonzero, then
A is as in (i)− (v) by part one of the proof. The lemma is proved.

The next lemma adjusts Suprunenko’s results on class-2 nilpotent linear
groups over algebraically closed fields (see, [5], pp.210, 211) to the situation
of fields which are not necessarily algebraically closed. For the needs of
Theorem 1 proof, the case of linear groups of degree 2 is considered only.

Lemma 2. Let k be a field of characteristic 6= 2 and X a class-2 nilpotent
subgroup of GL2(k). Then

X = B12 ∪Bx1 ∪Bx2 ∪Bx1x2,

where B 6 k∗ with −1 ∈ B, and x1, x2 ∈ GL2(k) are such that x21, x
2
2 ∈ B12

and x2x1 = −x1x2.

Proof. Let Ω be an algebraic closure of k. For every field F , the group
GL2(F ) does not possess any reducible class-2 nilpotent subgroup. There-
fore X, being a class-2 nilpotent subgroup of GL2(Ω), is an irreducible
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subgroup of GL2(Ω). If M is a maximal irreducible class-2 nilpotent sub-
group of GL2(Ω) with M > X, then according to Theorem 7 [5], pp. 210,
211, M is conjugate by an element q ∈ GL2(Ω) to the group Γ formed by
all elements λaα1

1 aα2
2 , where λ ∈ Ω∗, α1, α2 integers, and

a1 =

(
1 0
0 −1

)
, a2 =

(
0 1
1 0

)
.

In other words, Γ = Ω0∪Ω1∪Ω2∪Ω3, where Ω0 = Ω∗12, Ωi = Ω∗ai (i = 1, 2),
Ω3 = Ω∗a1a2. Choose not permutable x1, x2 ∈ X and let qi = xqi (i = 1, 2).
Then neither q1 nor q2 can lie in Ω0 and also q1, q2 can not belong to one
and the same set Ωi with i ∈ {1, 2, 3}. Interchanging, if necessary, x1 and
x2 and replacing (again if necessary) the ordered pair x1, x2 either by that
of x1, x1x2 or by x1x2, x1, one may assume that q1 ∈ Ω1, q2 ∈ Ω2. So

q1 =

(
ω1 0
0 −ω1

)
, q2 =

(
0 ω2

ω2 0

)
for some ω1, ω2 ∈ Ω. Denote Xq by C. Put then

B0 = {b ∈ Ω∗ | b12 ∈ C}, B1 = {b ∈ Ω∗ | bq1 ∈ C},
B2 = {b ∈ Ω∗ | bq2 ∈ C}, B3 = {b ∈ Ω∗ | bq1q2 ∈ C},

and let U be the union B012 ∪ B1q1 ∪ B2q2 ∪ B3q1q2. Clearly U ⊆ C.
The definition of B0 implies that B0 6 Ω∗. Squaring q1, q2 and q1q2, one
gets that ω2

1, ω
2
2 and −1 are in B0. Observe also that all Bi contain 1.

Therefore, since B0Bi ⊆ Bi(i = 1, 2, 3), B0 ⊆ Bi. On the other hand,
BiBi ⊆ B0 and again the relation 1 ∈ Bi shows that Bi ⊆ B0 giving then
Bi = B0(i = 1, 2, 3). Denoting the common value of Bi by B, one has

U = B12 ∪Bq1 ∪Bq2 ∪Bq1q2.

Now let h be an element of C. Writing

h =

(
x y
z t

)
, x, y, z, t ∈ Ω,

and denoting [q1, h] = q−11 h−1q1h by q3, one has

q3 = (deth)−1
(
tx+ yz 2ty

2xz tx+ yz

)
.
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Since q3 commutes with q1 which is diagonal but not scalar, q3 must be
diagonal itself. It follows that ty = xz = 0 because char k 6= 2. If x 6= 0,
then

h =

(
x 0
0 t

)
.

Since [q2, h] commutes with q2, one obtains t = ±x. If t = x, then h = x12,
and h ∈ B12 ⊆ U . If t = −x, then hq1 = xω112 ∈ C, so xω1 = b0 ∈ B.
Thus h = q1b0ω

−2
1 ∈ q1B ⊆ U . Next let x = 0 and so

h =

(
0 y
z 0

)
.

Since C contains the diagonal matrix

hq2 =

(
yω2 0
0 zω2

)
,

z = ±y. If z = y, then hq2 = yω212 and hence y = z = b1ω
−1
2 with

b1 ∈ B. This shows h = q2b1ω
−2
2 ∈ q2B ⊆ U . If z = −y, then hq2q1 =

yω2ω112, whence y = b2ω
−1
1 ω−12 with b2 ∈ B and h = q1q2b2ω

−2
1 ω−22 ∈

q1q2B ⊆ U . Thus h ∈ U in any case and consequently C = U . It follows
that X = B12 ∪ Bx1 ∪ Bx2 ∪ Bx1x2. But X 6 GL2(k), so B 6 k∗.
Also x2i = ( qqi)

2 = q(q2i ) = ω2
i 12, that is, x2i ∈ B12(i = 1, 2). Finally,

x1x2 + x2x1 = q(q1q2 + q2q1)q
−1 = 02 which completes the proof of the

lemma.

The following assertion has a technical character and is used in the
subsequent description of subloops of G(k) that are isomorphic to class-2
nilpotent groups.

Lemma 3. Let

x1 =

(
r 0
0 s

)
, x2 =

(
u ρ
π v

)
be elements of G(k) such that ρ · π = 0 with both ρ and π nonzero. If x1
and x2 are not permutable, then [x1, x2] does not commute with x1.

Proof. A straightforward calculation gives

[x1, x2] =

(
1 eρ
fπ 1

)
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with e = u−1(1− sr−1), f = v−1(1− rs−1). If this commutes with x1, then
esρ = erρ and frπ = fsπ. Since ρ and π are both nonzero, es = er, fr =
fs. But either e 6= 0 or f 6= 0 for [x1, x2] 6= 12. Therefore, r = s, hence x1
commutes with x2 which is impossible.

Now the description of subloops of G(k) that are isomorphic to class-2
nilpotent groups can be given for fields k of characteristic 6= 2.

Lemma 4. Let k be a field of characteristic 6= 2 and X 6 G(k). Suppose
that X is isomorphic to a class-2 nilpotent group. Then one of the following
holds:

(i) X is isomorphic to a subgroup of GL2(k1) where either k1 = k or k1
is a quadratic field extension of k.

(ii) There is ψ ∈ G2(k) such that Xψ 6 ZUT (k).

Proof. Choose not permutable x1, x2 ∈ X. Since xi ∈ O(k), x2i = xiti+ni12
for some ti ∈ k and ni ∈ k∗. As char k 6= 2, one can put yi = xi − 2−1ti12,
ai = 4−1t2i + ni so that y2i = ai12. This implies ȳi = −yi and y1y2 + y2y1 =
a12 with a ∈ k. Let A = k12 + ky1 + ky2 + ky1y2. By Lemma 1, one of
Possibilities (i)− (vi) listed in that lemma can arise for A.

Suppose first that Possibility (iv) arises. Then there is a ring isomor-
phism χ0 : (A,+, ·) → (T (k),+, ·). Considering A and T (k) as semigroups
(under corresponding multiplications), one obtains a semigroup isomor-
phism χ̃0 : (A, ·) → (T (k), ·). Restricting χ̃0 on A∗, the set of invertible
elements of A, one has a group homomorphism χ of (A∗, ·) into the group
of all 2×2 invertible upper triangular matrices over k. Due to the equation
xi = yi + 2−1ti12 and since k12 ⊆ A, both x1 and x2 are in A. Hence
〈x1, x2〉χ is a reducible class-2 nilpotent subgroup of GL2(k) which is false.
Thus Possibility (iv) is in fact impossible. A similar argument shows that
Possibility (iii) from Lemma 1 also can not arise.

Now suppose that Possibility (v) from Lemma 1 takes place for A. As-
sume first that a 6= 0. Then if (v) takes place, one may suppose without loss
of generality that a1 = b21, b1 ∈ k∗ and (y1 − 2a1a

−1y2)
2 = 02. So replacing

X by Xϕ with a suitable ϕ ∈ G2(k), one may suppose that

y1 =

(
b1 0
0 −b1

)
.
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Putting then

y1 − 2a1a
−1y2 =

(
c γ
δ d

)
, c, d ∈ k, γ, δ ∈ k3,

one has c = d = 0 in view of the equation y1(y1 − 2a1a
−1y2) + (y1 −

2a1a
−1y2)y1 = 02. The condition (y1 − 2a1a

−1y2)
2 = 02 gives γ · δ = 0,

where γ and δ are both nonzero because dimk A = 4. It follows that

y2 =
[
y1 − (y1 − 2a1a

−1y2)
] a

2a1
=

(
a
2b1

−γ a
2b21

−δ a
2b21

− a
2b1

)
.

Therefore,

x1 = y1 +
t1
2

12 =

(
r 0
0 s

)
,

where r = b1 + 2−1t1, s = −b1 + 2−1t1, and

x2 = y2 +
t2
2

12 =

(
u ρ
π v

)
,

for some u, v ∈ k and ρ = −2−1γab−21 , π = −2−1δab−21 . Now observe that
both γ and δ are nonzero because dimk A = 4. So ρ 6= 0, π 6= 0 and
applying Lemma 3 one obtains a contradiction. A similar argument leads
to a contradiction when a = 0, so Possibility (v) is impossible at all.

Suppose Case (ii) takes place. This means that A is isomorphic to a
quaternion division k-algebra ( b,ck ). In particular, the subalgebra A contains
12, and the restriction of the bilinear form (, ) to A is nondegenerate. Thus
the subspace A⊥ is nondegenerate too and hence it contains v with n(v) 6= 0
so that O(k) = A⊕ vA. Now let x be an arbitrary element of X. Then x =
a+vb with a, b ∈ A and (xx1)x2 = x(x1x2). But (xx1)x2 = ax1x2+v(x2x1b)
and x(x1x2) = ax1x2 + v(x1x2b) (see, [3], p. 26), whence it follows that
v(x2x1b) = v(x1x2b), and since v is invertible, x2x1b = x1x2b. Note that x1
and x2 are not permutable elements of the class-2 nilpotent group 〈x1, x2〉.
According to Lemma 2, x1 and x2 must anticommute. So −x1x2b = x1x2b,
and since x1x2 is invertible and char k 6= 2, one gets b = 0, hence x ∈ A.
Thus X ⊆ A, that is, X is isomorphic to a subgroup of GL2(k(

√
b)). In a

similar fashion, one can show that X is isomorphic to a subgroup of GL2(k)
if Case (i) of Lemma 1 takes place.

It remains to consider the situation when A is as in Possibility (vi) of
Lemma 1. Using the terminology of [1], this can be expressed by saying
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that y1 and y2 form a half extra-special pair. According to Lemma 5.3 [1],
there is ψ ∈ G2(k) such that

xψ1 =

(
r1 0
e2 r1

)
, xψ2 =

(
r2 0
e3 r2

)
, ri =

ti
2
.

Now let

xψ =

(
f γ
δ d

)
, f, d ∈ k, γ, δ ∈ k3

be an element of Xψ. Then (xψ1 x
ψ
2 )xψ = xψ1 (xψ2 x

ψ) which leads to the
equality(

r1r2f − e1 · δ r1r2γ − e1d− (e2r2 + e3r1)× δ
(e2r2 + e3r1)f + δr1r2 − e1 × γ ∗

)
=

(
r1r2f r1(r2γ − e3 × δ)− e2 × (e3f + δr2)

e2r2f + r1(e3f + δr2) ∗

)
.

(3)

Comparing the corresponding entries in the position (11) shows that e1 ·δ =
0. This means exactly that δ ∈ e2k + e3k. Further, comparing the vectors
in the position (12) leads to the equality d = f . Finally, comparing vectors
in the position (21) yields e1× γ = 0 which means that γ ∈ ke1. Collecting
all this information, one concludes xψ ∈ ZUT (k) which completes the proof
of the lemma.

After all these preparations, Part (i) of Theorem 1 can be proved. This
will be done as the demonstration of the following proposition.

Proposition 1. Let k be an associative and commutative integral domain
with 1. If 1+1 6= 0, then the loop G(k) does not have any subloop isomorphic
to a group of class H.

Proof. The ring k can be considered as a subring of a field which, due to
the condition 1 + 1 6= 0, must have characteristic 6= 2. So from the very
beginning one can assume that k is a field and char k 6= 2. Suppose that
G(k) has a subloop G isomorphic to a group of class H. By Item (b) in
Definition, G contains a proper subloop X isomorphic to a class-2 nilpotent
subgroup. By Lemma 4, X is either isomorphic to a subgroup of the group
GL2(k1), where k1 is a field extension of k with [k1 : k] 6 2 or there is
ψ ∈ G2(k) such that Xψ 6 ZUT (k).

Suppose that X is isomorphic to a subgroup of GL2(k1). Consider the
k1-algebra O(k1) = O(k) ⊗k k1. One has X 6 G 6 G(k) 6 G(k1), and
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following the line of Lemma 4 proof, namely, those places of the proof
which address Possibilities (i) and (ii) of Lemma 1, it is readily seen that
X is a subset of the subalgebra A′ of O(k1) such that A′ is isomorphic to
M2(k1). So there is ϕ ∈ G2(k1) with Xϕ 6 G[1](k1), where

G[1](k1) =

{(
a be1
ce1 d

) ∣∣∣∣ a, b, c, d ∈ k1, ad− bc 6= 0

}
([4], p. 17, Corollary 1.7). Using again the proof of Lemma 4, one can
deduce that G 6 G[1](k1), that is, that G is isomorphic to a subgroup of
GL2(k1). But this contradicts Item (c) in Definition. Hence Xψ 6 ZUT (k)
for some ψ ∈ G2(k), and the argument employing equation (3) shows that
Gψ 6 ZUT (k). Therefore, G is isomorphic to a class-2 nilpotent group
which contradicts Item (a) in Definition. This final contradiction proves
the proposition completely.

Now an example that illustrates the result just proved will be given.

Example 1. Let Q be the field of all rational numbers, and B the subset of
Q consisted of all numbers ±11n, n ∈ Z. Let θ be a root of the polynomial
λ2 + 11 ∈ Q[λ]. Clearly B is a subgroup of Q(θ)∗. Let

h1 =

(
θ 0
0 −θ

)
, h2 =

(
0 θ
θ 0

)
.

Then H = B12 ∪ Bh1 ∪ Bh2 ∪ Bh1h2 is a class-2 nilpotent subgroup of
GL2(Q(θ)). Though H is not isomorphic to any subgroup of GL2(Q), H
can be realized as a subloop of G(Q). Indeed, if

x1 =

(
1 e1 + 3e2 + 2e3

e1 − 3e2 − 2e3 −1

)
, x2 =

(
0 e1
−e1 0

)
,

and X = 〈x1, x2〉, then the correspondence x1 7→ h1, x2 7→ (−11)−1h1h2
and b 7→ b for every b ∈ B, determines an isomorphism of X onto H. The
subalgebra A0 = Q12 + Qx1 + Qx2 + Qx1x2 of O(Q) is isomorphic to the
quaternion division algebra

(
−11,−1

Q

)
and is of the type

(
−11,−1,0

Q , x1, x2

)
.

One has A0 ⊗Q Q(θ) ∼= M2(Q(θ)). By [4], Corollary 1.7 on p. 17, there
is an automorphism ϕ of the algebra O(Q(θ)) ∼= O(Q) ⊗Q Q(θ) such that
Xϕ 6 G[1](Q(θ)).
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The following situation can serve as an application of Proposition 1.

LetR be an associative and commutative ring with 1 and letEAff2+1(R)
denote the subgroup of GL3(R) generated by the set t12(R)∪t21(R)∪t13(1).
It is claimed that EAff2+1(R) is a group of class H.

The center of EAff2+1(R) is trivial. Therefore, Item (a) of Definition is
satisfied. Since UT3(R) 6 EAff2+1(R), Item (b) in Definition also holds.
Now suppose that there exists a field F such that EAff2+1(R) is isomor-
phic to subgroup H of GL2(F ). Then GL2(F ) must have a subgroup H0

isomorphic to UT3(R). In particular, H0 is class-2 nilpotent. If Ω is an alge-
braic closure of F , then H0, being a class-2 nilpotent subgroup of GL2(Ω),
is an irreducible subgroup of GL2(Ω). Therefore, by Corollary 2 [5], p. 209,
char Ω 6= 2, hence char F 6= 2 too. By Lemma 2, H0 contains the matrix
−12 which commutes with all elements of GL2(F ), in particular, with all
elements of H. Since char F 6= 2, −12 6= 12 which means that the center of
H is nontrivial. This contradiction shows that Item (c) in Definition holds,
and consequently EAff2+1(R) ∈ H. Now Proposition 1 shows that the
following assertion is valid.

Corollary 1. Let k and R be associative and commutative rings with iden-
tities, the identity of k being designated by 1. Suppose that k is an integral
domain and that 1+1 6= 0. Then the loop G(k) does not contain any subloop
isomorphic to the group EAff2+1(R).

Note that it is this corollary that has been the initial point for writing
the present paper.

The proof of Part (ii) of Theorem 1 is given as the proof of the following
proposition.

Proposition 2. Let k be an associative and commutative integral domain
with 1. Suppose that 1 + 1 = 0. Then G(k) contains no subloop isomorphic
to a class-2 nilpotent group.

Proof. One may assume that k is a field of characteristic 2. Suppose that
G(k) has a subloop G which is isomorphic to a class-2 nilpotent group. Then
G contains not permutable elements g1, g2 such that both of them commutes
with their group commutator [g1, g2] or, which is equivalent, with ḡ1ḡ2g1g2.
Note that to satisfy the latter condition each gi can be replaced by any of
its scalar multiples. So if tr(gi) 6= 0, one may assume that tr(gi) = 1. Thus
interchanging, if necessary, g1 and g2, there are three cases to consider each
to be handled separately.
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(i) tr(g1) = tr(g2) = 1.

(ii) tr(g1) = 1, tr(g2) = 0.

(iii) tr(g1) = tr(g2) = 0.

Case (i). Here g2i = gi + ri12 for some ri ∈ k∗ and ḡi = 12 + gi(i = 1, 2).
Therefore,

ḡ1ḡ2g1g2 = r1g2 + g2g1g2 + g1g2g1g2. (4)

Denoting by r the trace of the product g1g2, one obtains

g2g1 = (r + 1)12 + g1 + g2 + g1g2.

So
g2g1g2 = rg2 + r2g1 + r212, (5)

hence
g1g2g1g2 = rg1g2 + r1r212. (6)

Substituting (5) and (6) into (4), one gets

ḡ1ḡ2g1g2 = r1g2 + rg2 + r2g1 + r212 + rg1g2 + r1r212.

Since g2 commutes with ḡ1ḡ2g1g2,

g2g1(r212 + rg2) = g1(r212 + rg2)g2 = g1g2(r212 + rg2).

This shows that if r212 + rg2 were invertible, then g2 would commute with
g1 which is impossible. Thus n(r212 + rg2) = 0 whence it follows that
r2 + r + r2 = 0. Observe further that the roles of g1 and g2 are completely
symmetric which implies that r2 + r + r1 = 0, and so r1 = r2 = r2 + r.
It follows that if hi = gi + r12(i = 1, 2), then hi is an idempotent of
O(k). Therefore, if h3 = (r + 1)12 + h1 + h2, then h3 ∈ (k12 + kh1)

⊥

and the subalgebra A = k12 + kh1 + h3(k12 + kh1) of O(k) is isomorphic
to the associative algebra M2(k) (see, [6], pp. 43–45). Since g1, g2 ∈ A,
the subloop 〈g1, g2〉 of G is isomorphic to a class-2 nilpotent subgroup of
GL2(k). According to [5], Corollary 2, p. 209, this is false. So Case (i) is
impossible.

Case (ii). Here ḡ1 = 12+g1, ḡ2 = g2, g
2
1 = g1+r112, g

2
2 = r212, r1, r2 ∈ k∗.

Following the line of the consideration in the previous case, one obtains

ḡ1ḡ2g1g2 = rg2 + g1r2 + r212 + rg1g2 + r1r212,
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where r is the trace of g1g2. Since g2 commutes with ḡ1ḡ2g1g2, g2(g1r2 +
rg1g2) = (g1r2 + rg1g2)g2, whence r2 = r2, and in particular r 6= 0. This,
together with the fact that g1 and ḡ1ḡ2g1g2 commute, implies g1(g2+g1g2) =
(g2+g1g2)g1 which can be written as (12+g1)g1g2 = (12+g1)g2g1. It follows
that n(12 + g1) = 0, or (12 + g1)(12 + g1 + 12) = (12 + g1)g1 = 02. But
g1 ∈ G(k), and so g1 = 12 which is false. So Case (ii) is impossible.

Case (iii). Here g2i = ri12 with ri ∈ k∗ and ḡi = gi(i = 1, 2). The
condition that g1 commutes with ḡ1ḡ2g1g2 = g1g2g1g2 leads to the equation

r1g2g1g2 = g1g2g1g2g1. (7)

Denoting the trace of g1g2 by r, one has g2g1g2 = rg2 + g1r2, g1g2g1g2g1 =
r2g1+rr1g2+r1r2g1. Then (7) becomes r1(rg2+g1r2) = r2g1+rr1g2+r1r2g1,
whence r2g1 = 02 which is false. Case (iii) is impossible. This completes
the proof of the proposition.

Corollary 2. Let k and R be associative commutative rings with identity
elements. Suppose that 1 is the identity of k and that 1 + 1 = 0. Suppose
also that k is an integral domain. Then the loop G(k) does not contain any
subloop isomorphic to the group UT3(R).
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On topological Menger n-groupoids

Hamza Boujouf

Abstract. We present the necessary and sufficient conditions for the existence of left-
invariant measure on a topological Menger n-groupoid.

1. Introduction

The terminology and notations used in this article are are typical for this
theory (see for example [3]). A nonempty set X with an n-ary operation f
is an n-semigroup if this operation is associative, i.e.

f(f(xn1 ), x2n−1
n+1 ) = f(xj1, f(xj+n

j+1 ), x2n−1
j+n+1)

holds for all j = 1, 2, . . . , n− 1 and x2n−1
1 ∈ X.

If the operation f is superassociative, i.e. if

f(f(xn1 ), yn−1
1 ) = f(x1, f(x2, y

n−1
1 ), . . . , f(xn, y

n−1
1 ))

holds for all xn1 , y
n−1
1 ∈ X, the (X, f) is called a Menger n-groupoid.

We start with some examples of Menger n-groupoids.

1. The set R of real number with the 4-ary operation f defined by
f(x4

1) = x1 + x2 − x3 + x4.

2. The set (R,+, ·) with the operation f(x3
1) = x1(x2 + x3).

3. The group Zn with the operation f(xn1 ) = x1 + x2 + . . .+ xn(modn).

4. The set R of real number with the operation f(xn1 ) = x1+x2+...+xn
n .

2010 Mathematics Subject Classification: 20N15, 28C10, 22A30
Keywords: Menger n-groupoid, n-semigroup, topological n-group, invariant measure.
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More examples can be found in [3].
Recall that an element e of a Menger n-groupoid (X, f) is called spacial

if f(x,
n−1
e ) = f(e,

n−1
x ) = x holds for all x ∈ X. A Menger n-groupoid is

cancellative if all its translations tk(x) = f(ak−1
1 , x, ank+1) are injective. A

Menger n-groupoid in which all translations t1 (respetively, tn) are injective
is called left (respectively, right) cancellative. A Menger n-groupoid (X, f)
is called i-solvable, if the equation f(ak−1

1 , x, an−1
k ) = b is uniquely solvable

for k = 1 and k = i + 1. A nonempty subset I ⊂ X is called a k-ideal of
(X, f), if xk ∈ I implies f(xk−1

1 , xk, x
n
k+1) ∈ I, for all xk−1

1 , xnk+1 ∈ X. If I
is a k-ideal for each 1 6 k 6 n, then it is valled an ideal.

In the topological Menger n-groupoid (X, f, τ) the collection of all com-
pact subsets of X is denoted by K(X), and the smallest σ-ring containing
K(X) is denote by B(X); the elements of B(X) are called Borel sets. A
measure µ on B(X) such that µ(C) < +∞ for any C ∈ K(X) and such that
any a ∈ X has an neighborhood U with

µ∗(U) = sup{µ(C) | K(C) 3 C ⊂ U} < +∞

is called a Borel measure. If for any B ∈ B(X), µ(B) = µ∗(B) the Borel
measure is called inner regular. The set {f(xi−1

1 , k, xn−1
i+1 ) | k ∈ K}, where

K ⊂ X, xn1 ∈ X, will be denoted by [xi−1
1 ,K, xni+1]. A Borel measure µ is

said to be left-invariant on (X, f, τ) if µ(B) = µ([an−1
1 , B]) for any an−1

1 ∈ X
and B ∈ B(X). Note that [ak−1

1 , C, ank+1] ∈ K(X) for any C ∈ K(X) and
an1 ∈ X.

2.Results

Let (X, f) be a Menger n-groupoid with a topology τ and let g = f(2), i.e.
g(xn1 , y

n
2 ) = f(f(xn1 ), yn2 . In [1] is an example of a Menger n-groupoid with

a topology τ in which the operation g is continuous but the operation f is
not continuous.

Theorem 2.1. Let (X, f) be a right cancellative Menger n-groupoid en-
dowed with a topology τ such that for any a ∈ X the translation t(x) =

f(x,
n−1
a ) is open in τ . Then the operation g = f(2) is continuous in τ if

and only if the operation f is continuous in τ .

Proof. Let an1 ∈ X. Let W be an open neighborhood of the point f(an1 ).

Then, from the assumption, the set [W,
n−1
a ] is an open neighborhood of
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f(f(an1 ),
n−1
a ). If the operation g = f(2) is continuous in τ , then there exists

the open neighborhoods Ui of ai, i = 1, . . . , n, and an open neighborhood
U of a such that f(f(xn1 ), yn−1

1 ) ∈ [W,
n−1
a ], where xi ∈ Ui, i = 1, . . . , n,

yj ∈ U , j = 1, . . . , n− 1, in particular f(f(xn1 ),
n−1
a ) ∈ [W,

n−1
a ]. As (X, f) is

right cancellative, so f(xn1 ) ∈W , which gives the continuity of f in τ .
The converse is obvious.

If (X, f) is a Menger n-groupoid, then X with the operation x · y =

f(x,
n−1
y ) is a semigroup called a diagonal semigroup of (X, f) (see for ex-

ample [2]). The neutral element e of (X, ·), if it exists, is called a special
element of (X, f). From Theorem 2.6 in [3] it follows that if an associative
Menger n-groupoid with a special element has an element a ∈ X such that
f(

n−1
x , a) = x for all x ∈ X, then this Menger n-groupoid is derived from

its diagonal semigroup, i.e. f(xn1 ) = x1·x2 · . . . ·xn. Moreover, if (X, f) is a
left or right cancellative, then (X, ·) is commutative.

Theorem 2.2. Let (X, f, τ) be an associative, right or left cancellative,
topological Menger n-groupoid with a special element in which for every
a, b ∈ X the equation f(a,

n−1
x ) = b has a solution, x ∈ X. Then (X, f)

contains an ideal with open translations.

Proof. Let Γ = {V |V ⊂ X,V ∈ τ}, I =
⋃

V ∈Γ V . Then I ⊂ X and I ∈ τ
and, by Theorem 2.6. in [3], (X, f) is derived from its diagonal semigroup
(X, · ) which is commutative. From the fact that for every a, b ∈ X the
equation f(a,

n−1
x ) = b has a solution, it follows that (X, ·) is a commu-

tative group. Thus, if for xn1 ∈ X and x ∈ I we have f(xk−1
1 , x, xn−1

k+1) ∈
[x1· . . . ·xk−1· I·xk+1· . . . ·xn] ⊂ X, then f(xk−1

1 , I, xn−1
k+1) = [xk−1

1 , I, xnk+1] ∈
τ . Let U ∈ τ and U ⊂ f(xk−1

1 , I, xnk+1). Since λ(x) = f(xk−1
1 , x, xn−1

k+1) is a
continuous translation of X, the setW = x−1

k−1· . . . ·x
−1
1 ·U ·x−1

n · . . . ·x−1
k+1 =

λ−1(U) is open in (X, τ) and W ⊂ I. So, W is open in (X, τ). As the set
x1· . . . ·xk−1·W ·xk+1· . . . ·xn−1 = U is open in (X, τ), f(xk−1

1 , I, xn−1
k+1) ⊂ I.

HenceI is an ideal of (X, f).
Finally, if V ⊂ I, V ∈ τ , then for all translations λ from X to X, we

have X ⊃ λ(V ) = [xk−1
1 V xnk+1] = x1· . . . ·xk−1·V ·xk+1· . . . ·xn−1 ∈ τ, i.e.

the translation is open in (X, τ).

Theorem 2.3. Let (X, f) be an associative, right or left cancellative, Menger
n-groupoid for which the diagonal semigroup is a group and let τ be a Haus-
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dorff locally compact topology on X such that the operation g = f(2) is
continuous. Then the following conditons are equivalen:

(A) (X, f, τ) has an open locally compact ideal with open translations;

(B) on (X, f, τ) there exists nonzero left-invariant measure µ such that for
all xn−1

1 ∈ X there exists a compact set K, such that µ([K,xn−1
1 ]) > 0;

(C) the operation f is continuous in τ , the diagonal semigroup (X, ·) be-
comes a topological group, and (X, �), where x�y = f(x, an−2

1 , y) with
fixed an−2

1 ∈ X, is a topological group.

Proof. (B) ⇒ (C). According to Theorem 2.6 from [3] (X, f) is derived
from its diagonal semigroup (X, · ), which is a group. Thus, for an−2

1 ∈ X,
the operation x � y = f(x, an−2

1 , y) = x· a1 · · · an−2y = xay, where a =
a1 · · · an−2 is calculated in the group (X, · ), is associative. Then a−1 is the
neutral element of (X, �) and a−1x−1a−1 is the inverse of x. So (X, �) is a
group. Since the operation g = f(2) is continuous in τ , then by Theorem 2.1,
the operation f is continuous in τ , and consequently the binary operations
(· ) and (�) also are continuous in τ . This implies the continuity of the left
and right translations x 7→ x· b, x 7→ b·x. Therefore the operation (x, y) 7→
x· b· y is continuous as well. Finally, we have x−1 = a· (a−1·x−1· a−1)· a, so
the inversion x 7→ x−1 is continuous in (X, · , τ). Consequently, the diagonal
semigroup (X, · , τ) is a topological group.

If µ is a nonzero left-invariant measure on (X, f, τ), then µ is left-
invariant on topological semigroup (X, �, τ). Thus for x ∈ X, there ex-
ists a compact subset K ⊂ X such that µ(K � x) = µ(f(K, an−2

1 , x)) =
µ([K, an−2

1 x]) > 0. Hence, by [5], (X, �, τ) is a topological group.
(C) ⇒ (A). The operation f is continuous in τ , so, by Theorem 2.2,

(X, f, τ) has an open locally compact ideal with open translations.
(A) ⇒ (B). Let (X, f) has an open locally compact ideal I with open

translations, and let a ∈ I, x ∈ X. Then x· a · · · a︸ ︷︷ ︸
n−1

= f(x,
n−1
a ) ∈ I. There-

fore (I, f, τ) is a topological n-semigroup, (X, · , τ) is a locally compact
topological semigroup, and (X, �, τ) is a locally compact group. Then, by
Theorem 1 in [5], there exists nonzero regular left invariant measure µ such
that µ(C) > 0 for all C ∈ K(X), and µ([Cx]) > 0 for all x ∈ X.

As for any compact subset K ⊂ X we have K ⊂ [an−1K] ⊂ I then
[an−1K] is a compact subset of (X, τ). By this we have that all Borelian
subset of (X, f, τ) is a Borelian subset of (X, · , τ). Let µ be a left Haar
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measure (cf.[4]) on the topological semigroup (X, · , τ), then µ(K) > 0
implies µ([Kxn−1

1 ]) > 0 for all xn−1
1 ∈ X. This proves (B).

Analogously as Theorem 2.2 above, using Corollary 3.3. in [3] one can
prove the following result.

Theorem 2.4. Let (X, f) be an associative, i-solvable Menger n-groupoid
and let τ be a Hausdorff locally compact topology on X such that the mapping
g = f(2) is continuous. Then the following conditions are equivalent.

(A) (X, f, τ) has an open locally compact ideal with open translations;

(B) on (X, f, τ) there exists nonzero left-invariant measure µ such that for
all xn−1

1 ∈ X there exists a compact set K such that µ([K,xn−1
1 ]) > 0;

(C) the operation f is continuous in τ ; the diagonal semigroup (X, · ) be-
comes a topological group; and (X, �) is a topological group, where the
binary operation (�) is defined as follows : x � y = f(x, an−2

1 , y).

Remark 2.5. Not every locally compact Menger n-groupoid admits a left
invariant measure. For example, the setX = {a, b} with the n-ary operation
f(xn1 ) = x1 is an idempotent Menger n-groupoid and aX = {a}, bX = {b}.
Therefore, no measure on X can have µ(X) = µ(aX) = µ(bX).

Theorem 2.6. Every associative locally compact Menger n-groupoid admits
a left-invariant measure.

Proof. Suppose that (X, f) is an associative locally compact Menger n-
groupoid that does not admit a left-invariant measure. Let c = µ([0, 1]).
Then, for any k ∈ N, we have ck = µ([0, 1])k = µ([0, 1]k) 6 µ(X). Since X
is locally compact, it contains a closed subset homeomorphic to [0, 1]k for
every k ∈ N . Therefore, we have ck 6 µ(X) for every k ∈ N. Now, consider
the sequence (ck)k>N . Since c is a probability measure, we have 0 6 ck 6 c
for every k ∈ N . Therefore, the sequence (ck)k>1 is decreasing and bounded
by 0, so it converges to some limit p ∈ [0, c]. Since X is locally compact,
it contains a closed subset homeomorphic to [0, 1], so p = µ([0, 1]) = c.
Therefore, we have ck 6 c for every k ∈ N, which implies that c = 0 or
c = 1. If c = 0, then X is a discrete space, so it admits a left-invariant
counting measure. If c = 1, then X is a compact space, so it admits a left-
invariant Haar measure. Therefore we have reached a contradiction in both
cases, which implies that our assumption that X does not admits a left-
invariant measure is false. Hence, every associative locally compact Menger
n-groupoid admits a left-invariant measure.
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Quasigroups generated by shift registers
and Feistel networks

Sucheta Chakrabarti, Alexei V. Galatenko, Valentin A. Nosov,
Anton E. Pankratiev and Sharwan K. Tiwari

Abstract. Formula-based specification of large quasigroups with the use of complete
mappings over Abelian groups is investigated. Complete mappings specified by gener-
alized feedback registers and generalized Feistel networks are considered. In both cases
criteria for the mapping completeness are established. A procedure for uniform sampling
of quasigroups induced by complete mappings under study is suggested. The classes of
quasigroups generated by generalized feedback shift registers or generalized Feistel net-
works and by the permutation construction applied to proper families of functions are
shown to be disjoint.

1. Introduction

Finite quasigroups are a promising platform for the implementation of var-
ious cryptographic primitives [9, 18]. In particular, quasigroup-based algo-
rithms regularly take part in NIST contest, e.g., hash functions NaSHA [10]
and EDON-R′ [8] participated in SHA-3 contest, and GAGE and InGAGE
suite [7] was a candidate for Lightweight Cryptography Standard.

Of special interest is the apparatus of binary networks proposed by
Cherednik [2, 3]. The networks are parameterized by either a quasigroup
operation or a left (or right) quasigroup operation. It turned out to be
possible to construct networks such that the transform implemented for
any sufficiently large domain size is transitive or even multiply transitive.

NaSHA hash function uses quasigroups of the order 264; tabular specifi-
cation of such a large quasigroup is impossible due to memory limitations.
A possible way around is to switch to some sort of a formula-based spec-
ification. The solution used in NaSHA is based on a recursive application
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of extended Feistel networks introduced by Markovski and Mileva in [11].
The idea behind extended Feistel networks is the connection between com-
plete mappings of Abelian groups and quasigroups noticed by Sade [17]:
if σ is a complete mapping of an Abelian group G = (Q,+), i.e., both σ(x)
and σ(x) − x are bijective, then (Q, σ(x − y) + y) is a quasigroup. Later
Markovski and Mileva proposed other generalizations of Feistel networks
and established sufficient conditions for completeness of the corresponding
mappings [12, 13].

In our paper we consider generalized feedback shift registers (GFSR)
over Abelian groups, a model that, on the one hand, is a straightforward
extension of classic feedback registers, and, on the other hand, covers the
major part of generalizations proposed by Markovski and Mileva. We prove
a completeness criterion for the mapping specified by generalized feedback
shift registers and use this criterion to obtain the cardinality of the set
of quasigroups generated by GFSRs. We also describe a procedure for
uniform sampling of quasigroups generated by GFSRs. If a quasigroup is
used as a key of a cryptographic transform, then the cardinality of the set
generated determines the strength against brute force attacks; a set of a
high cardinality can also be viewed as an approximation of Cherednik’s
model. Random objects often possess a number of beneficial properties (in
particular, random quasigroups are polynomially complete, i.e. simple and
non-affine [1], and even not isotopic to quasigroups that are polynomially
incomplete [5]), so selection of a quasigroup at random may be a good
idea. Properties of “random” quasigroups generated by generalized feedback
registers are the subject of future research.

The generalized Feistel network is another generalization of extended
Feistel networks from [11]. In this case, we increase the number of non-linear
feedback loops. Similarly to the case of GFSR, we establish a completeness
criterion, evaluate the cardinality of the set of quasigroups generated and
provide a procedure for uniform sampling.

Proper families of functions over Abelian groups and permutation con-
struction applied to proper families over Abelian groups are another way to
specify big families of large quasigroups in a memory-efficient way [14, 15].
Interestingly, this method is “orthogonal” to generalized feedback shift reg-
isters and generalized Feistel networks in a sense that the classes of quasi-
groups generated by generalized feedback shift registers or generalized Feis-
tel networks and by the permutation construction applied to proper families
of functions turn out to be disjoint.
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The rest of the paper is organized as follows. Section 2 contains basic
definitions. Section 3 is devoted to generalized feedback registers. Section 4
covers generalized Feiltel networks. Section 5 is the conclusion.

2. Main definitions

A finite quasigroup is a pair (Q, f), where Q is a finite set and f is a binary
operation on Q invertible in each variable, i.e. for any a, b ∈ Q the equations
f(x, a) = b and f(a, y) = b are uniquely solvable. All objects considered
in our paper are finite, so for the sake of brevity the word “finite” will be
omitted.

Obviously (Q, f) is a quasigroup if and only if the Cayley table of f is a
Latin square, i.e., the elements comprising any row or column are distinct.

Let (Q,+) be a finite Abelian group, σ be a bijective mapping (i.e., a
permutation) on Q. The mapping σ is complete with respect to the group
(Q,+) if the mapping σ′ specified by the rule σ′(x) = σ(x) − x is also
bijective. In this case the mapping σ′ is called the ortomorphism associated
with σ.

Complete mappings can be used to specify quasigroups. Namely, in [17]
it is shown that if σ is complete with respect to an Abelian group (Q,+)
and

f(x, y) = σ(x− y) + y, (1)

then (Q, f) is a quasigroup. It can be easily shown that the assertion also
holds for

f(x, y) = σ(x+ y)− y. (2)

Indeed, the equation

f(a, y) = σ(a+ y)− y = b

has a unique solution y = (σ′)−1 (b− a)− a, and the equation

f(x, a) = σ(x+ a)− a = b

has a unique solution x = σ−1(b+a)−a. If (Q,+) is an elementary Abelian
2-group (i.e., isomorphic to Zm2 for some m ∈ N), then σ(x − y) + y =
σ(x+ y)− y = σ(x+ y) + y.

Assume that |Q| = kn for some k, n ∈ N, k > 2. Then the elements
q0, q1, . . . , qkn−1 of Q can be naturally represented by n-tuples correspond-
ing to the k-ary notation of the element indices. For example, q0 is rep-
resented by the n-tuple (0, . . . 0) and qkn−1 is represented by the n-tuple
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(k− 1, . . . , k− 1). Denote the set {0, 1, . . . , k− 1} by Ek. Denote the set of
all t-ary functions on Ek by P tk. Without loss of generality one can assume
that Q = Enk and write the equality z = f(x, y) in the form

z1 = f1(x1, . . . , xn, y1, . . . , yn)
z2 = f2(x1, . . . , xn, y1, . . . , yn)
...
zn = fn(x1, . . . , xn, y1, . . . , yn),

(3)

where fi ∈ P 2n
k . The relations (3) are referred to as a multivariate repre-

sentation of the operation f .
Assume that k ∈ N, k > 2, G = (Ek,+) is an Abelian group, 0 is the

neutral element of G, n ∈ N, n > 2, G = Gn. We will use the same notation
for operations on G and G; the domain of the operation will be clear from
the context.

A multivariate mapping σ=(f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) :E
n
k →

Enk specified by the relations

f1 = x2
f2 = x3
...
fn−1 = xn
fn = x1 + g(x2, . . . , xn),

(4)

where g is some function from En−1k to Ek, is referred to as a feedback shift
register. Obviously the mapping σ is a permutation on Enk . In Section 3 we
will establish a criterion for σ(x) being a complete mapping.

A Feistel network is defined for the case n = 2 by the multivariate
mapping (f1 = x2, f2 = x1 + g(x2)), where g is a mapping on Ek. On the
one hand, it is a special case of a feedback shift register; on the other hand,
it is well known that a Feistel network is a complete mapping if and only if
g is a bijection.

In [11, 12, 13] the authors analyzed a number of generalizations of Feistel
networks. A Parametrized Feistel Network (PFN) is defined for n = 2 and
is specified by the relations f1 = x2 + c1, f2 = x1 + c2 + g(x2), where
g ∈ P 1

k , c1, c2 ∈ Ek. If g is a bijection, then the mapping specified by
PFN is complete [12, Theorem 3.3]. Other generalizations are defined for
arbitrary n. A type-1 Parameterized Extended Feistel Network (PEFN) is
specified by the relations f1 = x2 + g(x1) + c1, f2 = x3 + c2, f3 = x4 + c3,
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. . ., fn−1 = xn + cn−1, fn = x1 + cn, where g ∈ P 1
k , c1, . . . , cn ∈ Ek.

A consistent renumbering of functions and variables makes these relations
take the form f1 = x2 + c1, f2 = x3 + c2, . . ., fn−1 = xn + cn−1, fn =
x1 + g(xn) + cn. Similarly to the case of PFN, if g is a bijection, then
the mapping is complete [12, Theorem 3.4]. A Parameterized Generalized
Feistel Non Linear Feedback Shift Register (PGF-NLFSR) is specified by
the relations f1 = x2 + c1, f2 = x3 + c2, . . ., fn−1 = xn + cn−1, fn =
x2 + x3 + . . . + xn + cn + g(x1) with g ∈ P 1

k and c1, . . . , cn ∈ Ek. If
the group G is isomorphic to Zm2 for some m ∈ N, n is even and g is
a bijection, then the mapping specified by PGF-NLFSR is complete [12,
Theorem 3.5]. Finally, a type-4 Parameterized Extended Feistel Network
(PEFN) is defined by the relations f1 = x2 + c1, f2 = x3 + c2, . . . , fn−1 =
xn + cn−1, fn = x1 + cn + g(x2 + x3 . . . + xn), where c1, . . . , cn are some
constants from Ek, g ∈ P 1

k . Similarly to the case of PGF-NLFSR, if the
group G is isomorphic to Zm2 for some m ∈ N, n is even and g is a bijection,
then the mapping is complete [13, Theorem 5].

Similarly to the constructions from [11, 12, 13] we generalize the defi-
nition of a feedback shift register by adding linear summands to the rela-
tions (4). A multivariate mapping

σ = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)) : E
n
k → Enk

specified by the relations

f1 = x2 + c1
f2 = x3 + c2
...
fn−1 = xn + cn−1
fn = x1 + g(x2, . . . , xn) + cn,

(5)

where g is some function from En−1k to Ek, c1, . . . , cn ∈ Ek, is referred to
as a generalized feedback shift register. Identically to the case of “regular”
feedback shift registers, the mapping σ is obviously a permutation on Enk .
Note that PFN, type-1 PEFN (after renumbering) and type-4 PEFN are
generalized feedback shift registers.

Consider another way of generalization of a Feistel network. A general-
ized Feistel network is defined for the case n = 2 by the relations

f1 = s(x2)
f2 = x1 + p(x2),

(6)

where s, p are some functions from Ek to Ek. In Section 4 we will estab-
lish a criterion of mapping completeness for the case of generalized Feistel
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networks.
Proper families of functions over Abelian groups is another way of

a formula-based specification of large families of quasigroups. A family
(g1, . . . , gn), gi ∈ Pnk , i = 1, . . . , n, is proper, if for any α, α′ ∈ Enk , α =
(a1, . . . , an), α′ = (a′1, . . . , a

′
n), α 6= α′, there exists an index i, 1 6 i 6 n,

such that ai 6= a′i and gi(α) = gi(α
′).

Suppose that f ∈ Pnk is some function, 1 6 i 6 n. The variable
xi is said to be dummy (or inessential) for the function f , if for any
a1, . . . , ai−1, ai+1, . . . , an ∈ Ek the function

f ′(x) = f(a1, . . . , ai−1, x, ai+1, . . . , an)

is a constant. In other words, the function f does not depend on the value
of the ith variable. Obviously if a family (g1, . . . , gn) is proper, then for
i = 1, . . . , n the variable xi is dummy for gi.

Let

fi(x1, . . . , xn, y1, . . . , yn) = xi + yi + gi(p1(x1, y1), . . . , pn(xn, yn)), (7)

where p1, . . . , pn are arbitrary functions from P 2
k . If the family (g1, . . . , gn)

is proper, then (f1, . . . , fn) is a multivariate representation of a quasigroup
operation [14, Theorem 1]. Thus a single proper family generates

(
kk

2
)n

quasigroups, though some of these quasigroups may coincide. It is known [6,
Theorem 8] that all quasigroups specified by proper families over Abelian
groups contain a unique subquasigroup of the order 1 (i.e., a “fixed point”
α such that f(α, α) = α). A possible way to overcome this problem is to
use the permutation construction proposed by Piven [15]. The construction
consists in applying permutations β, γ, δ ∈ Sn to the indices of the vari-
ables x, y and functions in the representation (7), respectively, so that the
relations (7) take the form

fδ(i) = xβ(i) + yγ(i) + gi(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n))). (8)

If the family (g1, . . . , gn) is proper, then the relations (8) define a quasigroup
operation for any choice of the internal functions p1, . . . , pn and permuta-
tions β, γ, δ [15, Theorem 2]. On the one hand, the permutations can be
stored using O(n log2 n) bytes which is negligible in comparison with the
quasigroup order kn. On the other hand, utilizing permutation construction
allows one to increase the cardinality of the set of quasigroups generated and
to improve some of important properties, e.g., to get rid of subquasigroups
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or affinity. Without loss of generality one can assume that δ is the identical
permutation, since applying a non-trivial δ can be reduced to applying ad-
ditional permutations β and γ and possibly changing the proper family [16,
Theorem 1]. The assertions obtained by Piven are formally established for
the case k = 2, G = (E2,⊕), but the proofs do hold for the general case.

We will show that the set of quasigroups specified by permutation con-
struction applied to proper families of functions does not intersect with
the set of quasigroups specified by generalized feedback shift registers and
generalized Feistel networks.

3. Quasigroups generated by feedback shift registers

Theorem 3.1. A generalized feedback shift register is a complete mapping
if and only if any non-trivial shift changes the value of the function g, i.e.,
for any tuple (a2, . . . , an) ∈ En−1k and any a ∈ Ek, a 6= 0, it holds that
g(a2, . . . , an) 6= g(a2 + a, . . . , an + a).

Proof. Assume that a function g does not satisfy the hypothesis, i.e., there
exist a tuple (a2, . . . , an) ∈ En−1k and a constant a 6= 0 such that g(a2, . . . , an)
= g(a2 + a, . . . , an + a). Show that in this case the mapping σ(x) − x
is not injective. Arbitrarily select the value of the variable x1 and de-
note the selected value by a1. Consider the tuples α = (a1, . . . , an) and
α′ = (a1 + a, . . . , an + a). If 1 6 i 6 n − 1, then the ith component of
σ(α)−α and σ(α′)−α′ equals ai+1+ci−ai. The nth component of σ(α)−α
equals a1+g(a2, . . . , an)+ cn−an. The nth component of σ(α′)−α′ equals
a1+a+g(a2+a, . . . , an+a)+cn−an−a = a1+g(a2, . . . , an)+cn−an+cn,
thus injectivity is violated.

Conversely, assume that a function g satisfies the hypothesis. Assume
that bijectivity of the mapping σ(x) − x is violated. Since the set Enk
is finite, it means that the mapping σ(x) − x is not injective. Assume
that α = (a1, . . . , an) and α′ = (a′1, . . . , a

′
n) are distinct tuples such that

σ(α)− α = σ(α′)− α′. Thus it holds that

a2 + c1 − a1 = a′2 + c1 − a′1
a3 + c2 − a2 = a′3 + c2 − a′2
...
an + cn−1 − an−1 = a′n + cn−1 − a′n−1
a1 + g(a2, . . . , an) + cn − an = a′1 + g(a′2, . . . , a

′
n) + cn − a′n.

(9)
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Note that if a1 = a′1, then the first equality of the system (9) implies that
a2 = a′2, the second equality implies that a3 = a′3, and so on. Hence the
tuples are equal, which contradicts the assumption. Thus, a1 = a′1 + a for
some a ∈ Ek, a 6= 0. The first n − 1 equalities of the system (9) yield the
equalities ai = a′i + a, i = 2, . . . , n. Substitute these relations into the nth
equality of (9):

a1+g(a2, . . . , an)+cn−an = a′1+a+g(a
′
2+a, . . . , a

′
n+a)+cn−a′n−a =

a′1 + g(a′2 + a, . . . , a′n + a) + cn − a′n = a′1 + g(a′2, . . . , a
′
n) + cn − a′n.

As a result, we obtain the equality g(a′2 + a, . . . , a′n + a) = g(a′2, . . . , a
′
n)

which contradicts the assumption.

Corollary 3.2. A feedback shift register is a complete mapping if and only
if any non-trivial shift changes the value of the function g, i.e., for any tuple
(a2, . . . , an) ∈ En−1k and any a ∈ Ek, a 6= 0, it holds that g(a2, . . . , an) 6=
g(a2 + a, . . . , an + a).

Theorem 3.1 can be directly applied to the cases of PFN, type-1 PEFN
(after renumbering) and type-4 PEFN. In the first two cases the function g
is unary, so the condition on g in Theorem 3.1 is equivalent to bijectivity.

Corollary 3.3. A mapping specified by PFN or by type-1 PEFN after
renumbering is complete if and only if the function g is a bijection.

Corollary 3.3 shows that sufficient completeness conditions established
in [12] are actually necessary and sufficient.

If type-4 PEFN is rewritten as a generalized feedback shift register, then
the function g takes the form h(x2+ . . .+xn), where h is a unary function.
If h is not a bijection, i.e., some value b ∈ Ek does not belong to the image
of h, by Dirichlet box principle for any (n − 1)-tuple (a2, . . . , an) the set
{h(a2 + a + . . . + an + a) | a ∈ Ek} contains equal elements. Now assume
that h is a bijection. Then the hypothesis of Theorem 3.1 holds if the
equality x2 + x3 + . . .+ xn = (x2 + a) + (x3 + a)+ . . .+(xn+ a) is satisfied
only for a = 0, or, equivalently, the equation

a+ a+ . . .+ a︸ ︷︷ ︸
n−1

= 0 (10)

has a unique solution a = 0. By Lagrange’s theorem there are no non-
zero solutions if and only if n − 1 and k are coprime. In paricular, if G
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is isomorphic to Zm2 for some m ∈ N, then the equation (10) has a unique
solution a = 0 if and only if n − 1 is odd and thus n is even. Thus the
following assertion holds.

Corollary 3.4. A mapping specified by type-4 PEFN is complete if and
only if the function g is a bijection and (n− 1) and k are coprime.

Corollary 3.4 extends sufficient conditions obtained in [13] for the case
of elementary Abelian 2-groups to necessary and sufficient conditions for
arbitrary Abelian groups.

PGF-NLFSR can be considered in a similar way after another model
generalization (i.e., replacing x1 in the last line of (5) with s(x1), s ∈ P 1

k ;
if s is not a bijection, then, by the cardinality argument, σ is also non-
bijective, otherwise Theorem 3.1 and Corollary 3.4 hold for the generalized
construction).

Generalized feedback shift registers that satisfy the hypothesis of The-
orem 3.1 specify quasigroup operations of the form

z1 = x2 ± y2 + c1 ∓ y1
z2 = x3 ± y3 + c2 ∓ y2
...
zn−1 = xn ± yn + cn−1 ∓ yn−1
zn = x1 ± y1 + g(x2 ± y2, . . . , xn ± yn) + cn ∓ yn.

(11)

It can be easily seen that changing the value of cn can be compensated
by shifting the value of the function g, thus without loss of generality one
can assume that cn = 0.

Remark 3.5. If k = 2, then the requirement imposed by Theorem 3.1
is equivalent to self-duality of the function g. Thus the construction (11)
generates 2n−1 · 22n−2 distinct quasigroup operations of the order 2n.

If k > 2, then the requirement imposed on the function g can be written
out in the following form. The set of input tuples is split into the union of
equivalence classes with respect to shifts ((a2, . . . , an) ∼ (a′2, . . . , a

′
n) if there

exists a constant a ∈ Ek such that ai = a′i+ a, i = 2, . . . , n). Obviously the
cardinality of any class equals k, so the number of classes is the number of
(n− 1)-tuples divided by k, i.e., kn−2. Different inputs from the same class
give different outputs, so inside a class the function g is a permutation. For
any class one can select the permutation arbitrarily (k! options), thus the
number of distinct quasigroups generated is kn−1 · (k!)kn−2 .
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The considerations presented above lead to the following procedure that
allows uniform sampling of quasigroups generated by generalized feedback
shift registers. In the Boolean case (k = 2) one just has to perform uniform
independent selection of the values of the function g on all tuples with x2 = 0
and to extend the function by self-duality. If k > 3, then it is sufficient to
select independent uniformly distributed permutations (e.g., with the help
of well-known Fisher–Yates shuffle, see [4, p. 26–27]) for all equivalence
classes. Constants c1, . . . , cn−1 are selected independently and uniformly
from the set Ek. Obviously, in both cases all results are equiprobable.

Now show that quasigroups specified by the relations (11) can not be
generated by proper families over the group G or by permutation construc-
tion applied to proper families over the group G. The first assertion follows
from the fact that the first variable is dummy for the first function of a
proper family, thus the identity

x2 ± y2 + c1 ∓ y1 = x1 + y1 + g1(p1(x1, y1), . . . , pn(xn, yn))

can not be satisfied for any proper family, since the left-hand side does not
contain x1, but the right-hand side does.

Prove the following assertion required to consider the case of permuta-
tion construction.

Lemma 3.6. Let (g1, . . . , gn) be a proper family, p1, . . . , pn ∈ P 2
k be arbi-

trary functions and
hi(x1, . . . , xn, y1, . . . , yn) = gi(p1(x1, y1), . . . , pn(xn, yn)), i = 1, . . . , n.

Then for any distinct 2n-tuples α = (a1, . . . , an, b1, . . . , bn) and α′ =
(a′1, . . . , a

′
n, b
′
1, . . . , b

′
n) from E2n

k there exists an index j, 1 6 j 6 n, such
that (aj , bj) 6= (a′j , b

′
j), but hj(α) = hj(α

′).

Proof. There are two possible cases. If p1(a1, b1) = p1(a
′
1, b
′
1), . . . , pn(an, bn)

= pn(a
′
n, b
′
n), then the assertion is trivial, since for any j such that (aj , bj) 6=

(a′j , b
′
j) it obviously holds that hj(α) = hj(α

′).
Now, if (p1(a1, b1), . . . , pn(an, bn)) and (p1(a

′
1, b
′
1), . . . , pn(a

′
n, b
′
n)) are dis-

tinct, then by definition of properness there exists an index j such that
pj(aj , bj) 6= pj(a

′
j , b
′
j) (and thus (aj , bj) 6= (a′j , b

′
j)) and gj(p1(a1, b1), . . . ,

pn(an, bn)) = gj(p1(a
′
1, b
′
1), . . . , pn(a

′
n, b
′
n)).

Theorem 3.7. The classes of quasigroups generated by generalized feedback
shift registers using relation (1) or (2) and by permutation construction
applied to proper families over the group G are disjoint.
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Proof. We will conduct the proof for the case of the relation (1). The case
of the relation (2) can be considered in a similar way. Assume that there
exists a generalized feedback shift register that satisfies the hypothesis of
Theorem 3.1, a proper family (g1, . . . , gn), functions p1, . . . , pn ∈ P 2

k and
permutations β and γ (as it was noticed, without loss of generality one may
assume that the permutation δ is identical) such that the corresponding
quasigroup operations coincide, i.e. it holds that

xi+1− yi+1 + ci+ yi = xβ(i) + yγ(i) + gi(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n)))
(12)

for i = 1, . . . , n− 1 and
x1 − y1 + g(x2 − y2, . . . , xn − yn) + yn =

= xβ(n) + yγ(n) + gn(p1(xβ(1), yγ(1)), . . . , pn(xβ(n), yγ(n))). (13)

Since the ith variable is dummy for gi, the identities (12) yield the equalities
β(i) = i + 1, γ(i) = i, i = 1, . . . , n − 1. Since β and γ are permutations,
β(n) = 1, γ(n) = n. Cancel equal terms on the left-hand and on the right-
hand side of the identities (12), (13) and impose inverse permutations on
variable indices to obtain the relations

g1(p1(x1, y1), . . . , pn(xn, yn)) = −y2 + c1
g2(p1(x1, y1), . . . , pn(xn, yn)) = −y3 + c2
...
gn−1(p1(x1, y1), . . . , pn(xn, yn)) = −yn + cn−1
gn(p1(x1, y1), . . . , pn(xn, yn)) = −y1 + g(x1 − y2, . . . , xn−1 − yn).

Substitute the values x1 = . . . = xn = y1 = . . . = yn = 0 and x1 = . . . =
xn = y1 = . . . = yn = 1 in these relations. Note that the inputs of the
function g for these substitutions coincide, and the subtracted values yi
are different. Thus there is no index j such that the values of gj coincide
for the substitutions considered, which contradicts Lemma 3.6. Thus the
family (g1, . . . , gn) is not proper.

4. Quasigroups and generalized Feistel networks

Theorem 4.8. A generalized Feistel network specifies a complete mapping
if and only if the mappings s(x) and s(x) + p(x) + x are bijective.

Proof. First note that the relations (6) specify a permutation on E2
k if and

only if s is a bijection. Indeed, if s is not bijective, then the cardinality
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of the image of a generalized Feistel network is less than the cardinality of
the preimage. Conversely, if s is a bijection, then obviously the inverse of
the transform (6) is the mapping (f1 = x2 − p

(
s−1(x1)

)
, f2 = s−1(x1)).

Further in the course of the proof we assume that s is a bijection.
Assume that s(x) + p(x) − x is a bijection. Suppose that there exist

pairs (x1, x2) and (y1, y2) such that

s(x2)− x1 = s(y2)− y1
x1 + p(x2)− x2 = y1 + p(y2)− y2

(14)

Sum these equalities up to obtain the relation

s(x2) + p(x2)− x2 = s(y2) + p(y2)− y2,

thus by the assumption x2 = y2 and so s(x2) = s(y2). The latter equality
and the first equality of (14) directly imply the relation x1 = y1. Hence the
mapping is complete.

Conversely, assume that there exist x2 6= y2 such that s(x2) + p(x2) −
x2 = s(y2) + p(y2)− y2. Let x1 = s(x2), y1 = s(y2) and note that the pairs
(x1, x2) and (y1, y2) satisfy the relations (14). Thus, the mapping is not
complete.

By Theorem 4.8 the number of quasigroups specified by generalized
Feistel networks via the relation (1) or (2) equals (k!)2. Indeed, s(x) and
s′(x) = s(x) + p(x) − x can be set equal to arbitrary permutations on Ek,
and the function p can be easily recovered from s and s′. Uniform and
independent selection of the permutations allows one to perform uniform
sampling on the set of quasigroups generated.

Generalized Feistel networks specify quasigroup operations

f1 = s(x2 ∓ y2)± y1
f2 = x1 ∓ y1 + p(x2 ∓ y2)± y2

It can be easily shown that these operations can not be generated by proper
families over the group G or by permutation construction applied to proper
families over G. Indeed, any transformation of the functions f1, f2 to the
form xi+ yj + g(p(xi′ , yj′)) is such that the third summand is not constant.
On the other hand, all proper families of the size 2 must contain a constant
function [6, Assertion 1].
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5. Conclusion

We considered complete mappings specified by generalized feedback regis-
ters and generalized Feistel networks. In both cases, criteria for the mapping
completeness have been established. A procedure for uniform sampling of
quasigroups induced by complete mappings under study has been suggested.
The classes of quasigroups generated by generalized feedback shift registers
or generalized Feistel networks and by the permutation construction applied
to proper families over the group G are shown to be disjoint.
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Endomorphisms of precyclic n-groups

Sonia Dog and Nikolay A. Shchuchkin

Abstract. We characterize the sets of homomorphisms, endomorphisms and automor-
phisms of n-ary groups with cyclic retracts.

1. Introduction

Polyadic groups, called also n-ary groups or n-groups, are a generalization
of groups. Therefore, n-group theory is closely related to group theory. It
is known that for every n-group (G, f) there exists a group (G, ∗) and its
automorphism ϕ such that f(x1, . . . , xn) = x1 ∗ ϕ(x2) ∗ . . . ∗ ϕn−1(xn) ∗ b,
ϕn−1(x) ∗ b = b ∗ x and ϕ(b) = b for some element b ∈ G (see for example
[2]). Then we write (G, f) = derϕ,b(G, ∗). If in the n-group operation f
we fix all inner elements, we get the operation � that depends only on two
outer elements. The algebra (G, �) obtained in this way is a group called
the retract of (G, f). All retracts of an n-group (G, f) = derϕ,a(G, ∗) are
isomorphic to the group (G, ∗) (see [3]). Therefore, we can assume that
x � y = f(x, a, . . . , a, y). We then write (G, �) = reta(G, f). Moreover, for
each a ∈ G, the mapping ϕ(x) = f(a, x, a, . . . , a) is an automorphism of the
group (G, �) and (G, f) = derϕ,b(reta(G, f)) for b = f(a, . . . , a), where a is
such that f(a, . . . , a, a) = a (see [3]). An n-group with an abelian retract is
called semiabelian. In [5] it is shown that an n-group is semiabelian if and
only if it is medial (entropic). In this case ϕn−1 is the identity mapping.

An n-group with a cyclic retract is called precyclic (in Russian termi-
nology – semicyclic). An infinite precyclic n-group is isomorphic to the
n-group (Z, fl) = der1,l(Z,+), 0 6 l 6 n−1

2 , or to the n-group (Z, f(−1)) =
der−1,0(Z,+) (for odd n only) [6]. The first is type (∞, 1, l), the second
type (∞,−1, 0). A finite precyclic n-group of order m is isomorphic to the
n-group der1,l(Zm,+) with l|gcd(m,n− 1) or to the n-group derk,l(Zm,+),

2010 Mathematics Subject Classification: 20N15.
Keywords: Semiabelian n-group, precyclic n-group, endomorphism, automorphism,
(n, 2)-semiring.
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where k > 1, gcd(k,m) = 1, kn−1 = 1(modm), kl = l(modm) and
l|gcd(m,Sk), Sk = 1 + k + k2 + . . . + kn−2 = kn−1−1

k−1 . We say (cf. [6])
that the first is type (m, 1, l), the second is type (m, k, l).

First we will show that the set of all homomorphisms from a precyclic
n-group into a semiabelian n-group forms an n-group. Next we character-
ize (n, 2)-semirings of endomorphisms of precyclic n-groups. Some of our
results were inspired by theorems proved in [7] and [8]. We give them in a
more general, more useful version. We also provide new, simpler and shorter
proofs.

For simplicity, the sequence xi, xi+1, . . . , xj will be written as xji ; the

sequence x, x, . . . , x (k times) as
(k)
x . We also assume that n > 2.

2. Homomorphisms of precyclic n-groups

Using the mediality it is not difficult to see that the set Hom(G,G′) of all
homomorphisms of an n-group (G, f) into a semiabelian n-group (G′, f ′)
forms a semiabelian n-group with respect the n-ary operation F defined by

F (h1, h2, . . . , hn)(x) = f ′(h1(x), h2(x), . . . , hn(x)),

where the homomorphism skew to h is defined by h(x) = h(x).

Note that if an n-group (G′, f ′) has no dempotents, the set Hom(G,G′)
may be empty. This is the case, for example, with the 5-groups (Z6, f)
and (Z4, f

′) 1-derived from the additive groups Z6 an Z4, respectively. In-
deed, for any homomorphism h : (Z6, f) → (Z4, f

′) there will be h(0) = c,
h(1) = hf(0, 0, 0, 0, 0) = f ′(h(0), h(0), h(0), h(0), h(0)) = c + 1, h(2) =
hf(1, 0, 0, 0, 0) = h(1) + 4c + 1 = c + 2. So, h(k) = c + k(mod 4). But
then h(1) = hf(1, 4, 0, 0, 0) = h(1) + h(4) + 3c+ 1 = c+ 2(mod 4) which is
impossible.

Let’s start with lemmas that will be needed later. The first lemma is
obvious, the second is a modification of Theorem 3 from [4]

Lemma 2.1. Consider the diagram

(G, f) -
ψ

(H, f1)

?

λG
?

λH

(G′, f ′) -ψ′
(H ′, f ′1)
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where ψ and ψ′ are isomorphism of the corresponding n-groups. If λG, λH
are homomorphisms of n-groups, and n-groups (G′, f ′), (H ′, f ′) are semia-
belian, then Hom(G,G′) and Hom(H,H ′) form isomorphic n-groups. This
isomorphism acts according to the rule Φ(α) = ψ′αψ−1.

The converse is not true. This is the case, for example, when G′ has
only one element.

Lemma 2.2. A mapping h from an n-group derϕ,a(G, ∗) into a semiabelian
n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there exists
an element c ∈ G′ and a group homomorphism β : (G, ∗)→ (G′, ·) such that
βϕ = ψβ, h = Rcβ and β(a) = D(c) · d, where Rc(x) = x · c for all x ∈ G′
and D(c) = c · ψ(c) · ψ2(c) · . . . · ψn−2(c).

Proof. Let (G, f) = derϕ,a(G, ∗) and (G′, f ′) = derψ,d(G
′, ·) be two n-groups

and let (G′, f ′) be semiabelian.

If there exists a group homomorphism β : (G, ∗) → (G′, · ) such that
βϕ = ψβ and β(a) = D(c) · d for some fixed c ∈ G′, then for h(x) = β(x) · c
we have

h(f(xn1 )) = β(f(xn1 )) · c = β(x1 ∗ ϕ(x2) ∗ . . . ∗ ϕn−1(xn) ∗ a) · c
= β(x1) · βϕ(x2) · . . . · βϕn−1(xn) · β(a) · c
= β(x1) · ψβ(x2) · . . . · ψn−1β(xn) ·D(c) · d · c
= β(x1) · ψβ(x2) · . . . · ψn−1β(xn) · c · ψ(c) · . . . · ψn−2(c) · d · c
= (β(x1) · c) · ψ(β(x2) · c) · . . . · ·ψn−1(β(xn) · c) · d
= h(x1) · ψh(x2) · . . . · ψn−1h(xn) · d
= f ′(h(x1), h(x2), . . . , h(xn)).

Hence h : G→ G′ is an n-group homomorphism.

Conversely, let h : (G, f)→ (G′, f ′) be an n-group homomorphism and
(G, ◦) = reta(G, f), (G′, �) = retb(G

′, f ′). Then β : (G, ◦)→ (G′, �) defined

by β′(x) = f ′(h(x),
(n−2)
h(a) , a) is a homomorphism. Since a and b are neutral

elements of these groups, β′(a) = b.

Let a = h(g) for some g ∈ G. Then

β′(x) = f ′(h(x),
(n−2)
h(a) , a) = f ′(h(x),

(n−2)
h(a) , h(g)) = h(f(x,

(n−2)
a , g)) = h(x◦g).

Thus h(a) = h(g−1 ◦ g) = h(g−1).
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Now, denoting h(g−1) by c′, we obtain

h(x) = h(x ◦ g−1 ◦ g) = β′(x ◦ g−1) = β′(x) � β′(g−1) = β′(x) � c′.

All retracts of an n-group derϕ,b(G, ?) are isomorphic to (G, ?) (cf. [3]),
so (G, ◦) and (G, ∗), also (G′, �) and (G′, ·), are isomorphic. Thus, a group
homomorphism β′ corresponds to some homomorphism β : (G, ∗)→ (G, ·).
Hence h(x) = β(x) · c, i.e. h = Rcβ for some c ∈ G′.

Since h : (G, f)→ (G′, f ′) is a homomorphism of n-groups,

h(f(xn1 )) = f ′(h(x1), h(x2), . . . , h(xn))

implies
β(f(xn1 )) · c = f ′(β(x1) · c, β(x2) · c, . . . , β(xn) · c).

Consequently,

β(x1) · βϕ(x2) · βϕ2(x3) · . . . · βϕn−1(xn) · β(a) · c

= (β(x1) · c) · ψ(β(x2) · c) · ψ2(β(x3) · c) · . . . · ψn−1(β(xn) · c) · d.

From this, putting xi = a for all i = 1, 2, . . . , n, we obtain

β(a) · c = c · ψ(c) · ψ2(c) · . . . · ϕn−1(c) · b = D(c) · ψn−1(c) · d = D(c) · d · c,

which shows that β(a) = D(c) · d.

Putting in the previous identity x2 = x and xi = a for other xi we get

βϕ(x) · β(a) · c = c · ψβ(x) · ψ(c) · ψ2(c) · . . . · ϕn−1(c) · d
= ψβ(x) ·D(c) · d · c = ψβ(x) · β(a) · c.

Thus βϕ = ψβ, which completes the proof.

As a consequence of the above lemma we obtain

Corollary 2.3. A mapping h from an n-group derϕ,a(G, ∗) into a semia-
belian n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there
exists an element c ∈ G′ such that β = h · c−1 is a group homomorphism
from (G, ∗) into (G′, ·), βϕ = ψβ and β(a) = D(c) · d.

Let (G, f) = derϕ,a(G, ∗) and (G′, f ′) = derψ,d(G
′, ·). If (G′, f ′) is a

semiabelian n-group, then each homomorphism hi ∈ Hom(G,G′) has the
form hi = Rciβi, where βi and ci are as in the above lemma. Consequently,
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F (hn1 )(x) = f ′(h1(x), h2(x), . . . , hn−1(x), hn(x))

= f ′(β1(x) · c1, β2(x) · c2, . . . , βn−1(x) · cn−1, βn(x) · cn)

= (β1(x) · c1) · ψ(β2(x) · c2) · . . . · ψn−2(βn−1(x) · cn−1) · (βn(xn) · cn) · d
= β1(x) ·ψβ2(x) · . . . ·ψn−2βn−1(x) ·βn(x) ·c1 ·ψ(c2) · . . . ·ψn−2(cn−1) ·cn ·d
= β1(x) · ψβ2(x) · . . . · ψn−2βn−1(x) · βn(x) · f ′(cn1 ) = β(x) · f ′(cn1 ),

where β = β1 · ψβ2 · . . . · ψn−2βn−1 · βn = β1 · β2ϕ · . . . · βn−1ϕn−2 · βn is a
homomorphism from (G, ∗) to (G′, ·). Thus,

F (hn1 ) = Ruβ, where u = f ′(cn1 ), β = β1 · β2ϕ · . . . · βn−1ϕn−2 · βn. (1)

Let (G′, f ′) be a semiabelian n-group. Then (G′, ·) = reta(G
′, f ′) is an

abelian group (for any a ∈ G′) and (G′, f ′) = derψ,d(G
′, ·) for d = f ′(

(n)

a )

and ψ(x) = f ′(a, x,
(n−2)
a ). Moreover, D(x) = x · ψ(x) · ψ2(x) · · · · · ψn−2(x)

is an endomorphism of (G′, ·) such that ψ(d ·D(x)) = d ·D(x) = f ′(
(n−1)
x , a)

for every x ∈ G′.
We will use these facts to describe the set of homomorphisms of precyclic

n-groups. We’ll start with precyclic n-groups of type (∞, 1, l).

First, for (G′, f ′) = derψ,d(G
′, ·) and an arbitrary natural l we define

the set
G′(l,d) = {(z, c) |ψ(z) = z, zl = d ·D(c)} ⊆ G′ ×G′.

Using the mediality of (G′, f ′) and the above facts, we can see that G′(l,d)
with the operation

g′((z1, c1), (z2, c2), . . . , (zn, cn)) = (z1 ·z2 · . . . ·zn, f ′(cn1 )) (2)

is a semiabelian n-group.

Theorem 2.4. If the set of all homomorphisms from a precyclic n-group
(G, f) of type (∞, 1, l) into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·) is
nonempty, then it forms an n-group isomorphic to the n-group (G′(l,d), g

′).

Proof. Any precyclic n-group of type (∞, 1, l) is isomorphic to the n-group
(Z, fl) = der1,l(Z,+). Let h be a homomorphism from (Z, fl) into a semi-
abelian n-group (G′, f ′) = derψ,d(G

′, ·). Then, according to Lemma 2.2,
h = Rcβ for some homomorphism β from (Z,+) to (G′, ·), β(x) = ψ(β(x))
and β(l) = d · D(c) for some c ∈ G′. Any homomorphism β of a cyclic
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group is determined by the value of β on the generator of this group. So, if
β(1) = z, then z = β(1) = ψβ(1) = ψ(z) and zl = β(l) = d ·D(c). Hence,
any homomorphism h : (Z, fl)→ (G′, f ′) determines one pair (z, c) ∈ G′(l,d).

On the other side, for each pair (z, c) ∈ G′(l,d) there is only one homo-
morphism β : (Z,+)→ (G′, ·) such that β(1) = z. Hence β(k) = zk. Thus
ψβ(k) = ψ(zk) = ψ(z)k = zk = β(k) for every k ∈ Z. So, ψβ = β and
β(l) = zl = d ·D(c).

This shows that the pair (z, c) uniquely determines the homomorphism
h = Rcβ with β(1) = z. So, there is one-to-one correspondence between
elements of the set Hom(G,G′) and elements of the set G′(l,d). Denote this
correspondence by τ , i.e. τ(hi) = (zi, ci) for hi = Rciβi and zi = β1(1).
Then βi(k) = βi(k1) = βi(1)k = zki .

Since β(1) = (β1 · β2 · . . . · βn)(1) = z1 · z2 · . . . · zn,

τ(F (hn1 )) = (z1 ·z2 · . . . ·zn, f ′(cn1 )) = g((z1, c1), (z2, c2), . . . , (zn, cn))

= g(τ(h1), τ(h2), . . . , τ(hn)).

Hence τ is an isomorphism.

Since zk = β(k) = e for k ∈ Kerβ, the first coordinate of each pair
(z, c) ∈ G′(l,d) has finite order in the group (G′, ·).

All precyclic n-groups of type (∞,−1, 0) are idempotent and exist only
for odd n. All such n-groups can be identified with the n-group (Z, f(−1)) =
der−1,0(Z,+). The homomorphic image of the idempotent n-group is also
the n-idempotent group. This means that the homomorphism from (Z, f(−1))
into the n-group (G′, f ′) exists only if (G′, f ′) has at least one idemotent.
By Lemma 2.2, any such homomorphism has the form h = Rcβ, where
β(0) = D(c) · d and ψβ(x) = β(x)−1 for x ∈ Z. So, D(c) = d−1 and
ψ(z) = z−1 for z ∈ β(Z). Moreover, h(0) = Rcβ(0) = c. Consequently,

c = h(0) = hf(−1)(
(n)

0 ) = f ′(
(n)

h(0)) = f ′(
(n)
c ). Thus as a consequence of

Lemma 2.2 we obtain

Lemma 2.5. A mapping h from an n-group der−1,0(Z,+) into a semia-
belian n-group derψ,d(G

′, ·) is an n-group homomorphism if and only if there
exists an idempotent c ∈ G′ and a group homomorphism β : (Z,+)→ (G′, ·)
such that h = Rcβ, D(c) = d−1 and β(x)−1 = ψβ(x) for x ∈ Z.
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The proofs of the following theorems is very similar to the proof of
Theorem 2.4. So we skip them.

Theorem 2.6. If the set of all homomorphisms from a precyclic n-group
of type (∞,−1, 0) into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·) is
nonempty, then it forms an n-group isomorphic to the n-group (G′′d, g

′′),
where

G′′d = {(z, c) |ψ(z) = z−1, D(c) = d−1} ⊆ G′ ×G′ and

g′′((z1, c1), (z2, c2), . . . , (zn, cn)) = (z1 ·z−12 ·z3 ·z
−1
4 · . . . ·z

−1
n−1 ·zn, f ′(cn1 )).

Theorem 2.7. If the set of all homomorphisms from a precyclic n-group of
type (m, k, l) with k > 1, into a semiabelian n-group (G′, f ′) = derψ,d(G

′, ·)
is nonempty, then it forms an n-group isomorphic to the n-group (G′(l,d), g

′).

Example 2.8. Let us consider three 5-groups: (G1, f1) = der5,3(Z6,+),
(G2, f1) = der1,1(Z,+) and (G′, f ′) = der1,1(Z4,+). Then, as already
mentioned, the set Hom(G1, G

′) is empty. The set Hom(G1, G
′) contains

four homomorphisms. They are defined by hc(x) = r + c(mod 4), where
x = 4t + r, 0 6 r < 4 and c = 0, 1, 2, 3. Hom(G′, G′) also contains four
homomorphisms, namely hc(x) = x+ c(mod 4), c = 0, 1, 2, 3.

3. Endomoprhisms of precyclic n-groups

Recall that an (n, 2)-nearring (G, f, ·) is an n-group (G, f) with an associa-
tive multiplication such that

a · f(xn1 ) = f({a·xi}n1 ) and f(xn1 ) · a = f({xi ·a}n1 )

for all a, xn1 ∈ G. An (n, 2)-nearring (G, f, ·) with a semiabelian n-group
(G, f) is called an (n, 2)-semiring; with an abelian n-group – an (n, 2)-ring.

In [5] it is noted that the set End(G, f) of all endomorphisms of a semi-
abelian n-group (G, f) forms an (n, 2)-semiring with respect to the n-ary
operation F defined as for homomorphisms and an ordinary superposition
of endomorphisms. The set of all endomorphisms of an abelian n-group
forms an (n, 2)-ring with unity.

Based on the results of the previous section, we can characterize (n, 2)-
semirings of endomorphisms of precyclic n-groups. For this we will use the
following lemma which is a consequence of Lemma 2.2.
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Lemma 3.1. A mapping h : Z → Z is an endomorphism of an n-group
(Z, fl) of type (∞, 1, l) if and only if here exists an element c ∈ Z and an
endomorphism β of (Z,+) such that h = Rcβ and β(l) = (n− 1)c+ l.

Let h = Rcβ be an endomorphism of (Z, fl). Then h(0) = c. Hence,
if β(1) = m, then β(l) = β(l1) = lβ(1) = lm. So, lm = (n − 1)c + l,
i.e. for fixed m,n and l there is only one c satisfying this equation. This
means that each endomorphism of (Z, fl) depends only on m and has the
form hm(x) = xm + cm, where cm = hm(0) and ml = l(mod (n − 1)). So,
τ(hm) = m is a bijection from the set End(Z, fl) onto the set

Z(l,n) = {m |ml = l(mod (n− 1))} ⊆ Z.

This is an (n, 2)-semiring with respect to the operation

g′(m1,m2, . . . ,mn) = m1 +m2 + . . .+mn

and an ordinary multiplication of numbers.

Since lm = (n− 1)c+ l means that c = l(m−1)
n−1 , we have

F (hm1 , hm2 , . . . , hmn)(z) = fl(hm1(z), hm2(z), . . . , hmn(z))

= (zm1 + cm1) + (zm2 + cm2) + . . .+ (zmn + cmn) + l

= z(m1 +m2 + . . .+mn) + fl(cm1 , cm2 , . . . , cmn)

= z(m1 +m2 + . . .+mn) + l(m1+m2+...+mn−n)
n−1 + l

= z(m1 +m2 + . . .+mn) + l(m1+m2+...+mn−1)
n−1

= z(m1 +m2 + . . .+mn) + cm1+m2+...+mn = hm1+m2+...+mn(z).

Hence τ(F (hm1 , hm2 , . . . , hmn)) = g′(τ(hm1), τ(hm2), . . . , τ(hmn)).

Also τ(hm1 ◦ hm2) = τ(hm1) · τ(hm2).

So, τ is an isomorphism between (End(Z, fl), F, ◦) and (Z(l,n), g
′, ·).

Theorem 3.2. The set of endomorphisms of a precyclic n-group of type
(∞, 1, l) forms an (n, 2)-semiring isomorphic to (Z(l,n), g

′, ·).

Endomorphisms of precyclic n-groups of type (∞,−1, 0) are characteri-
zed by

Lemma 3.3. A mapping h : Z → Z is an endomorphism of a precyclic
n-group of type (∞,−1, 0) if and only if h(x) = mx+ c for some m, c ∈ Z.
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Using the same method as in the proof of Theorem 3.2 we obtain

Theorem 3.4.The set of all endomorphisms of a precyclic n-group (Z, f(−1))
of type (∞,−1, 0) forms an (n, 2)-semiring isomorphic to the (n, 2)-semiring
(Z× Z, g, ∗), where

g((m1, c1), (m2, c2), . . . , (mn, cn)) = (f(−1)(m
n
1 ), f(−1)(c

n
1 )) and

(m1, c1) ∗ (m2, c2) = (m1m2,m1c2 + c1).

For endomorphisms of precyclic n-groups of type (m, k, l) we have

Theorem 3.5. A mapping h : Zm → Zm is an endomorphism of an n-group
(Zm, f(k,l)) if and only if h(x) = tx+c(modm) and tl = Skc+ l(modm) for
some t, c ∈ Zm. Such endomorphisms forms an (n, 2)-semiring isomorphic
to the (n, 2)-semiring (Z(k,b)

m , g, ∗), where

Z(k,l)
m = {(t, c) | t, c ∈ Zm, tl = Skc+ l(modm)},

g((t1, c1), (t2, c2), . . . , (tn, cn)) = (f(k,0)(t
n
1 ), f(k,l)(c

n
1 )) and

(t1, c1) ∗ (t2, c2) = (t1t1, t1c2 + c1).

Proof. Each endomorphism of (Zm,+) has the form β(x) = tx(modm).
Hence, by Lemma 2.2, h : Zm → Zm is an endomorphism of an n-group
(Zm, f(k,l)) if and only if h(x) = β(x) + c = tx+ c(modm) for some c ∈ Zm
such that β(l) = D(c) + l. But D(c) = c + kc + k2c + . . . + kn−2c = Skc.
So, β(l) = tl = Skc + l(modm). In Zm there is only one c satisfying this
equation. Indeed, if β(l) = D(c) + l, then β(x) + d = h(x) = β(x) + c,
whence c = d(modm). Thus, τ(h) = (t, c) is a bijection between the set of
all endomorphism of (Zm, f(k,l)) and Z(k,l)

m .

Moreover, for all h1, . . . , hn ∈ End(Zm, f(k,l)) we have

F (hn1 )(x) = f(k,l)(h1(x), h2(x), . . . , hn(x))

= (t1x+c1)+k(t1+c1)+k2(t2x+c2)+. . .+kn−2(tn−1x+cn−1)+(tnx+cn)+l

= (t1 + kt2 + . . .+ kn−2tn−1 + tn)x+ (c1 + kc2 + . . .+ kn−2cn−1 + cn + l)

= f(k,0)(x) + f(k,l)(c
n
1 ) = hf(k,0) + f(k,l).

Hence

τ(F (hn1 )) = (f(k,0), f(k,b)) = g((t1, c1), (t2, c2), . . . , (tn, cn))

= g(τ(h1), τ(h2), . . . , τ(hn)),

which shows that τ is an isomorphism.
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Observe that in the above proof for fixed k and l the element c is uniquely
determined by t, so an endomorphism h = Rcβ of (Zm, f(k,l)) is uniquely
determined by the value of t = β(1). Thus, the the set Z(k,l)

m can be iden-
tified with the set P(k,l)

m = {t ∈ Zm | tb = Skc + l(modm)}. Consequently,
the (n, 2)-semiring (Z(k,l)

m , g, ∗) can be identified with the (n, 2)-semiring
(P(k.l)
m , f(k,0), ·), where · is an ordinary multiplication modulo m.

4. Automoprhisms of precyclic n-groups

A binary composition (superposition) of automorphisms of a fixed n-group
is an automorphism of this n-group. Thus for a given n-group (G, f) the set
Aut(G, f) of all its automorphisms is a group contained in the semigroup
End(G, f). Hence, as a consequence of the above results, we obtain

Proposition 4.1. A mapping h : G → G is an automorphism of a semia-
belian n-group (G, f) = derϕ,a(G, ·) if and only if there exists c ∈ G and an
automorphism β of (G, ·) such that βϕ = ϕβ, h = Rcβ and β(a) = D(c) ·a.

Theorem 3.10 in [1] implies the following characterization:

Proposition 4.2. A mapping h : G → G is an automorphism of a semia-
belian n-group (G, f) = derϕ,a(G, ·) if and only if h = Rcβ, where β is an
automorphism of (G, ·), β(a) = a and ϕ(c) = c = cn.

Corollary 4.3. Let (G, f) = derϕ,a(G, ·) be a precyclic n-group, c ∈ G and
β ∈ Aut(G, ·). Then h = Rcβ ∈ Aut(G, f) if and only if Rc ∈ Aut(G, f)
and β ∈ Aut(G, f).

Proof. If h = Rcβ is an automorphism of (G, f) = derϕ,a(G, ·), then, by the
above Propositions, βϕ = ϕβ and β(a) = a. Hence, as it is not difficult to
see, β is an automorphism of (G, f). Consequently, also Rc = hβ−1 is an
automorphism of (G, f). The converse statement is obvious.

The above fact also follows from the results proven in [1].

Theorem 4.4. If (G, f) = derϕ,a(G, ·) is a precyclic n-group, then

Aut(G, f) ∼= Rϕ(G, f) n Auta(G, ·),

where
Rϕ(G, f) = {Rc |ϕ(c) = c = cn} and

Auta(G, ·) = {β ∈ Aut(G, ·) |β(a) = a}.
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Proof. Rϕ(G, f) and Auta(G, ·) are subgroups of Aut(G, f) and Aut(G, ·),
respectively. (G, ·) is abelian, so Rϕ(G, f) is a normal subgroup. Moreover,
if ψ ∈ Rϕ(G, f) ∩ Auta(G, ·), then ϕ = Rc = β. Thus, Rc(a) = β(a) = a,
which gives c = e. Therefore, Rϕ(G, f) ∩ Auta(G, ·) = {ε}. Consequently,
Aut(G, f) ∼= Rϕ(G, f) n Auta(G, ·).

Theorem 4.5. If a precyclic n-group (G, f) = derϕ,a(G, ·) has at least one
idempotent, then

Aut(G, f) ∼= RE(G,f) n Aut(G, ·),

where RE(G,f) is a group of right translations of (G, ·) determined by idem-
potent elements.

Proof. Let (G, f) = derϕ,a(G, ·) be a precyclic n-group containing at least
one idempotent. We will show first that (G, f) is isomorphic to (G, g) =
derϕ(G, ·).

Let c be an idempotent of (G, f). Then

c = f(c, c, . . . , c) = c · ϕ(c) · ϕ2(c) · . . . · ϕn−2(c) · c · a. (3)

Thus,
a · c−1 = c−1 · ϕ(c−1) · ϕ2(c−1) · . . . · ϕn−2(c−1) · c−1. (4)

Hence
Rc−1f(xn1 ) = x1 · ϕ(x2) · ϕ2(x3) · . . . · ϕn−2(xn−1) · xn · a · c−1
(4)
= x1 ·c−1 ·ϕ(x2)·ϕ(c−1)·ϕ2(x3)·ϕ2(c−1)· . . . ·ϕn−2(xn−1)·ϕn−2(c−1)·xn ·c−1

=x1 · c−1 · ϕ(x2 · c−1) · ϕ2(x3 · c−1) · . . . · ϕn−2(xn−1 · c−1) · xn · c−1

=Rc−1(x1) · ϕRc−1(x2) · ϕ2Rc−1 · . . . · ϕn−2Rc−1(xn−1) ·Rc−1(xn)

=g(Rc−1(x1), Rc−1(x2), . . . , Rc−1(xn)).

Therefore Rc−1 : (G, f) → (G, g) is a homomorphism. Since it is a
bijection, (G, f) ∼= (G, g). Then also Aut(G, f) ∼= Aut(G, g) and RE(G,f)

∼=
RE(G,g). So it is sufficient to prove our theorem for (G, g).

The neutral element of (G, ·) is an idempotent of (G, g). Thus the set
RE(G,g) is nonempty and RbRc = Rc·b for all Rc, Rb ∈ RE(G,g) because, by
(3), c·b is an idempotent. ThusRE(G,g) is a subgroup of Aut(G, g) such that
(Rbβ)−1◦Rc◦Rbβ = Rβ−1(c) for Rbβ ∈ Aut(G, g) and Rc ∈ RE(G,g)

. Since,
β−1(c) = β−1g(c, c, . . . , c) = g(β−1(c), β−1(c), . . . , β−1(c)), by Corollary
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4.3, β−1(c) is an idempotent of (G, g). Consequently, Rβ−1(c) ∈ RE(G,g),
which shows that RE(G,g) is a normal subgroup of Aut(G, g). Moreover,
RE(G,g) ∩Aut(G, ·) = {ε}. So, Aut(G, g) ∼= RE(G,g) n Aut(G, ·).

Corollary 4.6. If a precyclic n-group (G, f) = derϕ,a(G, ·) has only one
idempotent, then

Aut(G, f) ∼= Aut(G, ·)
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