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Advances in loop rings and their loops

Edgar G. Goodaire

Dedicated to the Memory of D. A. Robinson

Abstract

We describe some of the advances in the theory of loops whose loop rings satisfy �inter-
esting� identities that have taken place in the past ten years.

1. Introduction
Let L be a loop and R a commutative associative ring with 1. The loop
ring RL is constructed in precisely the same way the group ring would be
constructed if L were associative. Of special signi�cance is the fact that
each α ∈ RL can be represented uniquely in the form α =

∑
`∈L α``, with

the α` ∈ R almost all 0.
While historically, loop rings made an occasional appearance in the lit-

erature, notably with a semisimplicity result of Bruck [2] (a nonassociative
version of the theorem of Maschke for group rings), and a proof by Paige
that in most characteristics, a commutative power associative loop algebra
is a group algebra [31], nonassociative loop rings1 appear to have been lit-
tle more than a curiosity until the 1980s when the author found a class of
nonassociative Moufang loops whose loop rings satisfy the alternative laws.

In 1998, at the �fteenth Brazilian �Escola de Álgebra� held that summer
in Canela, I gave a talk on the history of loop rings, such as the subject
was at that time [13]. �Loops '07� presents a natural forum for an update,
which is the subject of this paper. Much of the work described here is joint
with Orin Chein or César Polcino Milies.
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1In this paper, �nonassociative� always means �not associative.�
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2. Alternative loop rings
Alternative rings are those satisfying

the right alternative law (yx)x = yx2

and
the left alternative law x(xy) = x2y

and can be thought of as the ring-theoretic analogues of Moufang loops. For
instance, the subring of an alternative ring generated by any two elements
is associative (this property is called diassociativity). Moreover, alternative
rings satisfy the familiar

right Moufang identity (xy · z)y = x(y · zy)

and
left Moufang identity (xy · x)z = x(y · xz).

Thus, if RL is an alternative ring, then L is a Moufang loop. The converse
is certainly not true, in general. It is not hard to see that the repeated
variable in a Moufang identity makes it unlikely to linearize to the ring RL.
On the other hand, some Moufang loops do have alternative loop rings.
Those that have alternative loop rings in any characteristic are called RA
loops. Such loops are well understood.

Let G be any nonabelian group with an involution g 7→ g∗ satisfying
gg∗ ∈ Z(G), the centre of G, for all g ∈ G. Let u be an indeterminate and
let L be the set G ∪ Gu. Extend the multiplication from G to L via the
rules

g(hu) = (hg)u

(gu)h = (gh∗)u

(gu)(hu) = g0h
∗g

for g, h ∈ G, where u2 = g0 is central in G and g∗0 = g0.
If L is RA, then L has form M(G, ∗, g0). Moreover,

• G has a unique nonidentity commutator, always denoted s, which is
a unique nonidentity commutator and associator in L,
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• both G and L have what is known as

the LC property: ab = ba if and only if a or b or ab is central

and

• the involution on G takes the form

g∗ =

{
g if g ∈ Z(G)
sg otherwise.

(1)

These properties were �rst found by Orin Chein and the author [7] and are
fully described in a monograph written with Eric Jespers and César Polcino
Milies [15].

With a hint at what was to come in other varieties, it soon became clear
that by restricting the coe�cient ring to characteristic 2, many more loops
have alternative loop rings. Calling such loopsRA2, those with the structure
M(G, ∗, g0) have been classi�ed [13, 11], although there are indeed RA2
loops not of this form. The smallest is the one Chein denotes M32(B, 5).

Suggestion 1. (Reasonable) Find more classes of RA2 loops.

Suggestion 2. (Optimistic) Classify RA2 loops.

3. Strongly right alternative loop rings
A right alternative ring is a ring which satis�es the right alternative law. In
characteristic di�erent from 2, it is not hard to show that a right alternative
ring satis�es

the right Bol identity (xy · z)y = x(yz · y).

It has long been known that a �nite dimensional simple right alternative
algebra with 1 is alternative [1]. This fact, together with Bruck's version
of Maschke's theorem referenced earlier, allowed Chein and the author to
conclude that in characteristic di�erent from 2, when the loop is �nite,
a right alternative loop algebra must be alternative [8]. Later, Kenneth
Kunen removed the restriction on �niteness and placed whatever theory
might develop for right alternative loop rings squarely within the context
of characteristic 2 [27], a rather idiosyncratic characteristic since it is the
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only characteristic in which the right Bol identity is not a consequence of
the right alternative law. In fact, Kunen has even found a right alternative
loop ring which does not satisfy the right Bol identity. Since such rings are
bizarre (and probably to be avoided), we say that a loop ring RL is strongly
right alternative and the loop L is SRAR (for strongly right alternative ring)
if RL satis�es the right Bol identity, but not the left, (x · yx)z = x(y · xz).
[A ring satisfying both Bol identities is alternative.]

We emphasize that strongly right alternative loop rings that are not
alternative can exist only in characteristic 2. In the 1990s, D. A. Robinson
and the author showed that RL is strongly right alternative if and only if L
is a (right) Bol loop (that is, a loop satisfying the right Bol identity,2) and,
for every x, y, z, w ∈ L, at least one of the following conditions holds:

D(x, y, z, w) : [(xy)z]w = x[(yz)w] and [(xw)z]y = x[(wz)y]
E(x, y, z, w) : [(xy)z]w = x[(wz)y] and [(xw)z]y = x[(yz)w] (2)
F (x, y, z, w) : [(xy)z]w = [(xw)z]y and x[(yz)w] = x[(wz)y].

It was observed that any Bol loop with a unique nonidentity commuta-
tor/associator is SRAR [24, 25] and, for a long time, such loops provided
the only examples of SRAR loops. Indeed, there are families of Bol loops
such as those Chein and the author have denoted L(B, m, n, r, s, t, z, w)
which are SRAR only if the subloop L′ generated by all commutators and
associatiors has order 2 [10].

Research with Orin Chein, currently still at the preprint stage, has
shown that the conjecture that |L′| = 2 characterizes SRAR loops is false.
Some of this work we now describe.

Let L be a Bol loop with an index 2 left nucleus N . Fix u ∈ L\N . Then
L is the union N ∪ Nu and multiplication in L can be de�ned entirely in
terms of multiplication in N and two bijections θ : N → N and φ : N → N ,
these being de�ned by

un = (nθ)u and nφ = u(nu).

Speci�cally, for n1, n2 ∈ N , we have

n1(n2u) = (n1n2)u,

(n1u)n2 = n1(un2) = [n1(n2θ)]u (3)
2In this paper, all Bol loops are assumed to satisfy the right Bol identity.
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and

(n1u)(n2u) = n1[u(n2u)] = n1(n2φ).

Furthermore, if L is not Moufang, then in either of the cases θ = I, the iden-
tity map on N , or φ = R(u2), right multiplication by u2 ∈ N , L is SRAR [6].
Using this fact, one can exhibit families of examples of SRAR loops many
of which have more than a single nonidentity commutator/associator. We
present two such families.

Let N be an elementary abelian 2-group of order at least 8, let θ = I
and let φ be any nonidentity bijection on N such that φ2 = I and φ is not a
right multiplication map. Let L = N ∪Nu, u an indeterminate, and extend
the binary operation on N to L by means of the equations (3). Then L is
an SRAR loop with left nucleus N and, in many cases, |L′| > 2.

Alternatively, let N be an abelian group of exponent 4, let u2 be any
element of order 2 in N , let φ = R(u2), let nθ = n−1 for n ∈ N and construct
a loop L as before. Again, L is SRAR and often |L′| > 2. In passing, we
mention that this family of loops is one discussed by P. Vojt�echovský in [36],
speci�cally the class labelled G(θxy, θxy, θx−1y, θxy). (The reader should,
however, be aware of the fact that Vojt�echovský's loops are left Bol.)

We conclude this section with some suggestions for further investiga-
tions. It may be important to note that this is certainly not the �rst time
that loops with large nuclei have appeared in the literature. Indeed, some
years ago, D. A. Robinson and the author showed that any loop with an
index 2 nucleus is conjugacy closed and hence a G-loop, that is, isomorphic
to all its loop isotopes [23]. This is certainly not the case for a Bol loop
with left nucleus of index 2. Still, such loops may have other elements of
interest.

Suggestion 3. What can be said about a Bol loop with index 2 left nucleus?

Suggestion 4. While it is probably unrealistic to try to characterize SRAR
loops at this time, it would be useful to �nd more families of SRAR loops.

4. Jordan loops
Much of the work described in this section is joint with a student, Rebecca
Keeping.

The theorem of Lowell Paige cited earlier, asserting that in most char-
acteristics a commutative power associative loop ring is associative, may
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explain why the possible existence of Jordan loop rings has been overlooked.
A ring is Jordan if it is commutative and satis�es

the Jordan identity (x2y)x = x2(yx).

Paige's work (with a small correction by Marshall Osborn [30]) shows that a
Jordan loop ring is associative in characteristic prime to 6, so nonassociative
Jordan loop rings can exist only in characteristics divisible by 2 or by 3. As
we shall see, they certainly exist in characteristic 2.

Theorem 1. [16] Let R be a commutative, associative ring with 1 and of
characteristic 2 and let L be a loop. The loop ring RL is nonassociative
Jordan if and only if L is a nonassociative commutative loop satisfying the
Jordan identity and either

1. R is a Boolean ring, that is, r2 = r for all r ∈ R, and, given any
elements x, y, z ∈ L, either

J1 : (x2y)z = x2(yz) and x(yz2) = (xy)z2, or
J2 : (x2y)z = (xy)z2 and x(yz2) = x2(yz), or
J3 : (x2y)z = x(yz2) and x2(yz) = (xy)z2

or else

2. J1 holds for all x, y, z ∈ L.

Each of the properties RA, RA2 and SRAR is equivalent to conditions
just on the loop. Those which characterize SRAR loops were given in (2),
for instance. Theorem 1 highlights the �rst instance of a situation where
the possibility of a loop ring satisfying an �interesting� identity may depend
also on the coe�cient ring. (No examples of this phenomenon are known
as yet.)

Question 5. Does there exist a nonassociative loop whose loop ring is Jor-
dan over one coe�cient ring of characteristic 2 but not over some other
ring of characteristic 2?

Until this question has been answered, we use the term RJ2 to describe
a loop which has a nonassociative Jordan loop ring over some coe�cient
ring of characteristic 2.
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There are other instances in the literature where the existence of an
identity in an algebra may depend on the �eld of coe�cients. L. Kokoris,
for example, has shown that a Jordan algebra over a �eld of characteristic
2 is power associative provided that �eld contains at least four elements
[26]. It follows from this that any loop which is RJ2 because it satis�es J1
identically must be power associative. We do not know if this must always
be the case.

Question 6. Is an RJ2 loop power associative?

One can also ask an apparently stronger question.

Question 7. Is a Jordan loop ring power associative?

The second question might follow from the �rst, of course.

Question 8. Is the loop ring of a power associative RJ2 loop power asso-
ciative?

Call a loop Jordan if it is commutative and satis�es the Jordan iden-
tity. Clearly any RJ2 loop is Jordan though the converse is certainly false.
Jordan loops exist in abundance as we demonstrate with an observation
and some constructions. Any commutative loop of exponent 2 is Jordan
and even RJ2 because it clearly satis�es J1 identically. Here is a way to
construct some such loops.

Let n be an odd positive integer, let A = {1, 2, 3, . . . , n}, and de�ne
f : A×A → {0, 1, 2, . . . , n− 1} by the rule

f(i, j) =
1
2
(n + 1)(j − 1)− 1

2
(n− 1)(i− 1) (mod n).

It is easily checked that for each �xed i, f(i, ·) : A → {0, 1, 2, . . . , n− 1} is a
bijection and for each �xed j, f(·, j) : A → {0, 1, 2, . . . , n− 1} is a bijection.
One can also verify that f(i, j) = f(j, i) for all i, j and f(i, i) = i − 1
(mod n) for each i. As a consequence, the n× n array whose (i, j) entry is
f(i, j) + 2 is a symmetric Latin square on the integers {2, 3, 4, . . . , n + 1}
with (i, i) entry i + 1. Now form the (n + 1) × (n + 1) table that has this
square in the lower right corner with all diagonal entries changed to 1, and
which has the integers 1, 2, 3, . . . , n + 1 in their natural order in row one
and in column one. The unique nonassociative commutative loop of order
6 arises from this construction with n = 5 and is de�ned by Table 1. For
reasons noted, the loop ring of this loop is Jordan in characteristic 2.
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1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 5 3 6 4
3 3 5 1 6 4 2
4 4 3 6 1 2 5
5 5 6 4 2 1 3
6 6 4 2 5 3 1

Table 1: The unique (nonassociative) Jordan loop of order 6.

The literature contains many examples of nonassociative loops con-
structed by �doubling� groups [35, 36, 4, 5],[15, �II.5]. Suggested by the
notation M(G, 2) which Orin Chein introduced for a certain family of Mo-
ufang loops, we label J(G,α) a Jordan loop constructed by the following
theorem.
Theorem 2. [16] Let G be an abelian group, let u be an indeterminate, let
L = G ∪Gu and let α : G×G → G be any symmetric map, that is, a map
satisfying α(g, h) = α(h, g) for all g, h ∈ G. Extend the multiplication in G
to L by setting

g(hu) = (hu)g = (gh)u

and
(gu)(hu) = α(g, h)

for g, h ∈ G. The pair (L, ·) is a loop if and only if for each g ∈ G, the
function αg : G → G de�ned by αg(x) = α(g, x) is a bijection and, when
this is the case,

1. Jordan if and only if α(α(g, g)h, g) = α(g, g)α(g, h) for all g, h ∈ G,
and

2. associative if and only if there exists a ∈ G such that α(g, h) = agh
for all g, h ∈ G.

Remark 3. Notice that maps α which de�ne loops correspond to |G| × |G|
Latin squares with α(g, h) in position (g, h).

As an example of how this theorem can be used, start with G = Zn, the
group of integers under addition (mod n). We require a symmetric map
α : Zn × Zn → Zn with the property that

α(i, α(i, i) + j) = α(i, i) + α(i, j)
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for all i, j ∈ G. Equivalently, writing αi(·) = α(i, ·) and setting λi = αi(i),
for each i ∈ {0, 1, 2, . . . , n}, we need a bijection αi of {0, 1, 2, . . . , n − 1}
(which becomes row i of a Latin square) satisfying

αi(λi + j) = λi + αi(j) (4)

for all i, j. To avoid associativity, we must also ensure that αi(j)− i− j is
not constant.

One obvious solution to (4) can be obtained by setting λi = 0 for all i,
in which case any (symmetric) Latin square with 0s on the diagonal de�nes
a suitable α. The table

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

(5)

shows a smallest such square and yields the loop J(Z4, α) described by Ta-
ble 2. While this loop is not of exponent 2, it is RJ2 by virtue of Theorem 4
that follows.

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 0 3 2
6 7 4 5 2 3 0 1
7 4 5 6 3 2 1 0

Table 2: The loop J(Z4, α) has a Jordan loop ring.

Theorem 4. Let L = J(G,α) be a loop constructed as in Theorem 2.
Suppose

i. α(g2h, k) = g2α(h, k) and

ii. α(α(g, g)h, k) = α(g, g)α(h, k)

for all g, h, k ∈ G. If α(g, h)g−1h−1 is not constant, then L is RJ2.
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Is there a future for Jordan loops? They have little structure. We
have noted that they need not be power associative. They don't satisfy
the inverse property, (xy)y−1 = x (which is the same as the cross inverse
property in a commutative loop), nor the weak inverse property, y(xy)−1 =
x−1. Also, even in a �nite power associative Jordan loop where there is a
well-de�ned notion of �order of an element,� the order of an element need
not divide the order of the loop nor must conjugate elements have the same
order.

As to existence, we recall that any commutative loop of order less than
6 is associative and we have shown how to construct nonassociative Jordan
loops of every even order n > 6. There are two Jordan loops of order 7
(neither of which is RJ2) so, by taking direct products, we have a nonas-
sociative Jordan loop of order 7k for any positive integer k. A referee has
reported a construction that produces Jordan loops of order 2n − 1 and
perhaps of some other odd orders as well. All this work addresses a natural
question.

Question 9. For what positive integers n does there exist a nonassociative
Jordan loop of order n?

5. The unit loop of an alternative loop ring
Just as with associative rings, the set of invertible elements or units of an
alternative ring is closed under multiplication and hence forms a (Moufang)
loop. The loops of units in alternative loop rings present a class of Moufang
loops which have been and continue to be studied from a number of points
of view.

5.1 Properties shared by L and U(RL). An RA loop L is a subloop
of the unit loop U(RL) and so one can ask what these loops might have in
common. Here, the coe�cient ring R is critical since, for example, over the
integers, if L is �nite and U(ZL) contains nontrivial units (U(ZL) 6= ±L),
then it contains a free group [15, �VIII.5], so it is rare that U(ZL) is nilpotent
or solvable or torsion over its centre, these being known properties of L.
These properties do prove interesting, however, for in�nite loops and over
�elds. It turns out that the torsion subloop of L, this being the set of all
elements of �nite order in L (which is a subloop of an RA loop), often plays
an important role. Here is a typical result.
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Theorem 5. [20] Let L be an RA loop with torsion subloop T and let K
be a �eld of characteristic 0. Assume U = U(KL) contains an element of
in�nite order. Then the following statements are equivalent:

1. U is torsion over its centre;

2. T is central;

3. u2 ∈ Z(U) for all u ∈ U ;
4. U is torsion of bounded exponent over its centre.

5.2 Involutions of RA Loops. An RA loop L has a canonical involution
` 7→ `∗, de�ned by lifting the involution in (1), whose �xed point set is
precisely Z(L), the centre of L. Any involution of L extends linearly to an
involution of the loop ring and, when canonical, the �xed point set of this
extended involution is Z(RL), the centre of RL. Interestingly, this is the
only involution of an RA loop with this property.

Theorem 6. [22] Let θ be an involution of an RA loop and let (RL)+ =
{α ∈ RL | αθ = α} denote the �xed points of RL. Assuming charR 6= 2,
the following statements are equivalent:

1. (RL)+ is closed under multiplication;

2. the elements of (RL)+ commute;

3. (RL)+ = Z(RL);

4. θ = ∗ is the canonical involution on L.

Incidentally, Polcino Milies and the author have also considered the
possibility that the set (RL)− = {α ∈ RL | αθ = −α} of skew-symmetric
elements of an involution θ commute. This happens only in characteristic
2 or 4 and in characteristic 2, often with severe restrictions on L [22].

Theorem 7. [21] Let L be a �nite RA 2-loop, F a �eld of characteristic
2 and θ the involution of RL which is the linear extension of ` 7→ `−1 for
` ∈ L. If (RL)− is a commutative set, then L = L0×A is the direct product
of an abelian group A and a loop L0 which is either the Cayley loop or the
loop M(16Γ2c2, 16Γ2c2, 16Γ2c

]
2, 16Γ2c

]
2) (in the notation of Chein [5]).
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5.3 The units of a right alternative loop ring. The units of a strongly
right alternative loop ring form a loop in the presence of a certain condition
on the augmentation ideal, this being the kernel ∆(L) of the augmentation
map ε : RL → R which is de�ned by ε(

∑
α``) =

∑
α`. Thus

∆(L) = {∑α`` ∈ L | ∑α` = 0}.

If δ ∈ ∆(L) is nil, that is, δn = 0 for some n > 1, then it is easily checked
that 1+ δ is a unit with inverse 1+ δ + δ2 + · · ·+ δn−1. (We now necessarily
assume characteristic 2.) Conversely, if u ∈ RL is a unit, then uv = 1 for
some v yields ε(u) = 1, because ε is a homomorphism, so δ = 1 + u ∈ ∆(L)
and u = 1 + δ. These observations show that if ∆(L) is nil, then

U(RL) = {u ∈ RL | ε(u) = 1},

a set which is clearly closed under multiplication and hence a Bol loop.
If L is a �nite 2-group or RA2 2-loop and F is a �eld of characteristic

2, then the augmentation ideal of FL is actually nilpotent : there exists
a �xed n so that any product of n elements is always 0 [28, 12]. Gábor
Nagy has shown the same thing for Bol 2-loops with a unique nonidentity
commutator/associator [29] but the unrestricted case appears to be open.

Question 10. If L is any SRAR 2-loop, is ∆(L) nilpotent?

A positive answer would imply that the unit loop of RL is Bol for any
SRAR loop L, a fact currently known just for SRAR loops with a unique
nonidentity commutator/associator [14].

5.4 Normal Complements. As we have noted, if L is a group, then
U(RL) is a group and if L is RA, then U(RL) is a loop. It is often (perhaps
always) the case that if L is SRAR, then U(RL) is loop. Whenever this
happens, it is of interest to know how L sits within U(RL). It is rare that
L is normal. A torsion RA loop L is normal in U(ZL), for instance, only in
the trivial case that U(ZL) = ±L [17] and, if �nite, never normal in U(FL)
when F is a �eld [19].

Question 11. Can an in�nite RA loop L ever be normal in U(FL), F a
�eld?

Assuming L is not normal, it is natural then to ask just what the
normalizer of L in U(RL) might be. Certainly L normalizes itself, as
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does the centre of U(RL). The �normalizer conjecture,� which asserts
NU (L) = Z[U(RL)] · L, says that these are essentially the only normal-
izing sets. The conjecture is true for torsion RA loops in their integral loop
rings [17].

Perhaps the most famous problem in the theory of loop rings has always
been the isomorphism problem: When does RL1

∼= RL2 imply L1
∼= L2?

Of special interest because of its connection to the isomorphism problem is
the possibility that L might have a normal complement in U = U(RL), a
subloop N that is normal in U and satis�es L ∩N = {1} and U = LN . It
is known, for example, that if L is a �nite RA loop, then L has a normal
complement in U(ZL) which is also torsion-free: un = 1 with n > 1 implies
u = 1. So the isomorphism problem has a positive solution over Z and the
proof is not hard.

Theorem 8. [19, 18] Let L and L1 be �nite RA loops and suppose that
ZL1

∼= ZL. Then L1
∼= L.

Proof. We observe that L and L1 have the same order since each is the rank
of the same free Z-module. Suppose ϕ : ZL1 → ZL is the given isomorphism
and let N be a torsion-free normal complement for L1 in U(ZL1). Then
ϕ(N) is torsion-free in U(ZL), so L ∩ ϕ(N) = {1} and Lϕ(N)/ϕ(N) ∼=
L/(L ∩ ϕ(N)) ∼= L.

Since [U(ZL) : ϕ(N)] = |L1| = |L| = [Lϕ(N) : ϕ(N)], we have U(ZL) =
Lϕ(N). Thus

L1
∼= U(ZL1)/N ∼= U(ZL)/ϕ(N) ∼= Lϕ(N)/ϕ(N) ∼= L.

Another setting in which the isomorphism problem has been investigated
for group rings is that where the group is a �nite p-group and the coe�cient
ring is the �eld of p elements, the so-called modular case.

Suppose G = 〈a1〉 × 〈a2〉 × · · · × 〈ad〉 is an abelian p-group written as
the direct product of cyclic groups generated by elements ai of order |ai|,
i = 1, . . . , d. For each d-tuple δ = (δ1, δ2, . . . , δd) of integers δi, 0 6 δi <
|ai| not all divisible by p, let P (δ) = (a1 − 1)δ1(a2 − 1)δ2 · · · (ad − 1)δd .
Robert Sandling has shown that the elements 1 + P (δ) generate the cyclic
components of U(FG), F the �eld of p elements [33].

It is helpful to look at an example. Suppose p = 2 and G = 〈a〉 × 〈b〉
is the direct product of cyclic groups of orders 2 and 4, respectively. The
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elements P (δ) are

x1 = a + 1
x2 = (a + 1)(b + 1)

x3 = (a + 1)(b + 1)2

x4 = (a + 1)(b + 1)3

x5 = b + 1

x6 = (b + 1)3,

so U(FG) =
∏〈1 + xi〉. Notice that 1 + x1 = a and 1 + x5 = b, so that G

is actually a direct factor of the unit group.
Now suppose G is a �nite nonabelian p-group. Write

G/G′ = 〈ā1〉 × 〈ā2〉 × · · · × 〈ād〉,

with ā = G′a and this time, for each d-tuple δ = (δ1, δ2, . . . , δd) of integers
δi, 0 6 δi < |āi| not all divisible by p, let

P (δ) = (a1 − 1)δ1(a2 − 1)δ2 · · · (ad − 1)δd .

Let J = ∆(G)∆(G′) + ∆(G′)∆(G) and let w(G) be the ideal generated
by 1 + J and the set of all 1 + P (δ). Under certain conditions, which
include the case |G′| = 2 of interest to us, Sandling proves that w(G) is a
normal complement to G in U(FG) [34] and then, with just a little more
work, establishes a positive solution to the isomorphism problem. Here's an
example.

Writing D4 = 〈a, b | a4 = b2 = 1, ba = a−1b〉 and C2 = 〈c〉, let G =
D4 × C2. We have G′ = {1, s} with s = a2 and G/G′ = 〈ā〉 × 〈b̄〉 × 〈c̄〉 ∼=
C2 × C2 × C2, so the elements P (δ) here are precisely the elements

x1 = a + 1
x2 = (a + 1)(b + 1)
x3 = (a + 1)(c + 1)
x4 = b + 1
x5 = (b + 1)(c + 1)
x6 = c + 1
x7 = (a + 1)(b + 1)(c + 1).
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Since ∆(G′) = {0, 1 + s}, the ideal J = ∆(G)(1 + s) = (1 + s)X, with
X = {1, a, b, c, ab, ac, bc, abc}, and the subgroup w(G) generated by 1 + J
and the 1 + P (δ) is a normal complement to G in U(FG). It is delightful
that the normal complements described are so concrete.

While attempts have been made to adapt Sandling's arguments to the
case of RA loops, these cannot meet with success, as we now show.

Let a, b, x be three elements which do not associate in an RA 2-loop L.
The LC property says (a, x) = (b, x) = (ab, x) = s. (Noteworthy is the fact
that such elements do not exist in the associative case.) With F the �eld
of two elements, we compute

x−1[(a + 1)(b + 1)]x = x−1(ab + a + b + 1)x
= sab + sa + sb + 1
= 1 + s[1 + (a + 1)(b + 1)]

and obtain

x−1[1 + (a + 1)(b + 1)]x = s[1 + (a + 1)(b + 1)]. (6)

Now think of a and b as amongst the generators of L/L′ so that 1 + (a +
1)(b + 1) = 1 + P (δ) for a certain δ. If w(L) is normal, it contains the
element (6), which is s(1 + P (δ)), so it contains s. We conclude that if
w(L) is normal, it is not a complement for L in U(FL).

This observation, of course, begs the question as to whether or not L
might have some other normal complement. In this connection, we can
report that Eric Moorhouse has veri�ed computationally that none of the
Moufang loops of order 16 (these are all RA2) has a normal complement
in U(FL), F the �eld of two elements. Moreover, again via computation,
it has been shown that three of the six nonMoufang Bol loops of order 8
(which are all SRAR) have normal complements in the units of FL (these
are B8(Π2), B8(Π5),B8(Π6) in the notation of R. P. Burn [3]), and three do
not.

Question 12. If L is an RA (even an RA2) 2-loop, can L ever have a
normal complement in U(FL), F the �eld of two elements?

Suggestion 13. Find conditions under which L has a normal complement
in U(FL) in the case that L is an SRAR 2-loop, F the �eld of two elements,
assuming the units of FL form a loop.
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Tribute

This paper has been written with a heavy heart within a month of the
passing of a dear friend and research partner. I met Dan Robinson at
Oberwolfach in the spring of 1976. During a sabbatical year at the Georgia
Institute of Technology in 1979-80, Dan told me about loops and introduced
me to some basic theory. It was during that year that my �rst paper on
alternative loop rings was written. Daniel Robinson was a wonderful friend
and mathematician whom I miss every day.
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Central automorphisms of Latin square designs
and loops

Jonathan I. Hall

Abstract

We discuss special automorphisms of Latin square designs or equivalently the 3-nets that
are dual to them. We focus on the relationships between these automorphisms and the
algebraic properties of the associated loops, especially Moufang loops.

1. Introduction
Let O be a set and consider a relation R ⊂ O3 with the property that
projection onto any pair of coordinates gives a copy of O2. That is, for
every pair a and b of (not necessarily distinct) members of O there are
unique triples (a, b, ∗), (a, ∗, b), and (∗, a, b) in R.

Such relations R are equivalent to Latin squares, to quasigroups, to 3-
nets, and to Latin square designs. Let R, C,E be a �xed permutation of the
index set {1, 2, 3}. We construct a Latin square L from R by, for each triple
t = (t1, t2, t3) ∈ R, letting tE be the entry in row tR and column tC . The
associated quasigroup Q = (O, ◦) then has L as its Cayley (multiplication)
table: if a = tR, b = tC , and c = tE , then a ◦ b = c. Each Latin square and
quasigroup occurs naturally as one of six di�erent conjugates, coming from
a �xed R and one of the six permutations of R, C, E.

A partial linear space (P,L) is a set of points P and a set of lines L
together with an incidence relation ∼ satisfying:

There do not exist distinct points a, b and distinct lines k, l with
a ∼ k ∼ b ∼ l ∼ a.

2000 Mathematics Subject Classi�cation: 20N05.
Keywords:Latin square design, 3-net, Bol loop, Moufang loop, inverse property.
Partial support provided by the National Science Foundation, USA
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The axiom is selfdual in the sense that (P,L) is a partial linear space if and
only if (L,P) is. In almost all examples of interest to us we will have the
further (selfdual) nondegeneracy axiom:

Every point is incident to at least two lines, and every line is incident
to at least two points.

In this case, we may identify each line with the subset of points incident to
it.

The Latin square design associated with the relation R is the partial
linear space with point set P = O1 ∪ O2 ∪ O3 (of size 3|O|) and line set L
(of size |O|2) given by

{a1, b2, c3} ∈ L ⇐⇒ (a, b, c) ∈ R .

Every line contains exactly three points, and xi is collinear with yj if and
only if i 6= j. The noncollinearity relation on P is an equivalence relation
whose classes Oi are the �bers of the Latin square design. The cardinality
|O| of each �ber is the order of the Latin square design (and Latin square
and quasigroup). A Latin square design is degenerate precisely when it has
order |O| = 1, and even in that case we may identify the unique line with
its set of three incident points.

The dual of a Latin square design is a 3-net (sometimes 3-web). The
line set of the 3-net is naturally partitioned into the three parallel classes
of lines Oi.

In this survey we are particularly interested in automorphisms of Latin
square designs (or equivalently the 3-nets dual to them) and the relation-
ships between certain geometrically de�ned automorphisms and the alge-
braic properties of the associated quasigroups and loops.

Much of what we present here is not new. Indeed such relationships
have been studied for nearly one hundred years. The equivalence of alge-
braic identities to the existence of various geometric automorphisms and
closure of con�gurations goes back to Veblen and Young [33] (who consid-
ered automorphisms of projective planes and their relationship to Desar-
gues' con�gurations) and to Reidermeister [29], Thomsen [31], Bol [2], and
their collaborators who, in a remarkable series of papers entitled �Topologi-
sche Fragen der Differentialgeometrie,� worked on 3-nets (3-webs) of parallel
classes of lines in the projective plane. Tits [32] studied automorphisms of
nets and their connection to groups with triality speci�cally in the context
of the octonions and Cartan's triality groups. Glauberman [12] and Doro
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[8] later de�ned and studied abstract groups with triality and the loops that
can be used to coordinatize them. The geometric study has been revived
more recently, particularly in the paper of Funk and P. Nagy [9], which
describes in detail the relationships between Bol re�ections on a 3-net and
coordinatizing Bol loops. The approach we take here is closer to that of Hall
and G.P. Nagy [16] and G.P. Nagy and Vojt¥chovský [24], which discusses
the case of simple Moufang loops extensively.

Since the early work in this area dealt with the study of line sets in
Euclidean planes, it was naturally phrased in terms of 3-nets. We prefer
the equivalent but dual world of Latin square designs and will largely stay
there.

Our general reference for combinatorics is M. Hall, Jr. [17], for group
theory Aschbacher [1], and for general loop theory Bruck [3] and P�ugfelder
[26]. For the octonions, see [30].

2. Automorphisms of Latin square designs
Let D = (P,L) be a Latin square design of order n with �bers OR, OC ,
and OE . The group Aut(D) is the automorphism group of D, the set of all
permutations σ of P = OR ∪OC ∪OE that take lines to lines:

{a, b, c} ∈ L ⇐⇒ {aσ, bσ, cσ} ∈ L .

Any automorphism of D must preserve the noncollinearity equivalence
relation whose equivalence classes are OR, OC and OE . The automorphism
group of this equivalence relation is the wreath product Sym(O) o Sym(3)
consisting of the normal base subgroup Sym(OR) × Sym(OC) × Sym(OE)
extended by the symmetric group of degree 3, Sym({R, C, E}) ' Sym(3).
The base subgroup BAut(D) of Aut(D) is its intersection with the base sub-
group of the wreath product. (See Section 4.1 below for further discussion
of full wreath products.)

A subdesign D0 = (P0,L0) is given by a subset P0 of P with the property
that, for l ∈ L, we have l ∈ L0 and l ⊆ P0 if and only if |l ∩ P0| > 2. A
subdesign is a Latin square design in its own right, although we must allow
for degenerate examples with one line or no lines (which happens when P0

is contained in a single �ber). The subset P0 determines D0 completely, so
we often (with mild abuse) identify a subdesign with its set of points.
Lemma 2.1. If A is a subset of Aut(D), then the set of common �xed points
of A in D is a subdesign of D. In particular, the subgroup of Aut(D) that
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�xes a �ber pointwise is semiregular on the remaining points. (That is, only
the identity �xes additional points.)

Proof. If an automorphism �xes two points of a line, then it �xes the line
and so the third point of the line. Therefore the �xed points of A form a
subdesign. The smallest subdesign of D containing a �ber and at least one
point not in that �ber is D itself.

A shear of D is an automorphism that �xes one �ber pointwise and �xes
the other �bers globally (that is, belongs to the base subgroup of Aut(D)).
By the lemma, the group of all shears with �xed �ber Q is semiregular on
each of the other �bers. A basic result of the sort we are interested in here
is the following, due to Praeger [28]. (See [7] for another proof.)

Theorem 2.2. Let D be a Latin square design, and let Q be a �ber. Then
the group S of all shears with �xed �ber Q is regular on some other �ber if
and only if D is the Latin square design associated with the Cayley table of
the group S.

We now come to one of the fundamental concepts of this paper. A
central automorphism τa of the Latin square design D with center a ∈ P is
a nontrivial automorphism of D that �xes the point a and all lines through
it. Therefore, if τa exists then, for all {a, b, c} ∈ L, we have

aτa = a, bτa = c, cτa = b .

In particular τa switches the two �bers that complement the �ber F con-
taining a. Since every line of L contains two points of this complement, the
permutation induced on the line set L by τa is uniquely determined. The
question is whether or not the action of τa can be de�ned on the remaining
points of the �ber F to be consistent with this action on the lines.

In the dual world of 3-nets, a central automorphism is usually called a
Bol re�ection [9]. There the action of a putative Bol re�ection on the points
of the 3-net (that is, the lines of D) is evident, and the question is whether
or not this induces a permutation of the lines of the 3-net (the points of D).

Proposition 2.3. In Aut(D) there is at most one central automorphism τa

with center a for each a ∈ P. If τa exists in Aut(D), then it has order 2 and
is central in the stabilizer of a in Aut(D), and τ g

a = τag for all g ∈ Aut(D).
If τa and τb exist in Aut(D) with a and b in di�erent �bers, then τaτb

has order 3 and 〈τa, τb〉 is isomorphic to Sym(3). If this is the case, then
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there is a unique conjugacy class T of central automorphisms in Aut(D),
and the centers of the members of T form a subdesign of D.

Proof. If t1 and t2 are two central automorphisms of D with center a, then
the automorphism t1t2 of D is trivial on both �bers o� a and so is the
identity by Lemma 2.1. Therefore if there is a central automorphism with
center a, then it is unique and has order 2.

For g ∈ Aut(D), the conjugate τ g
a is clearly a central automorphism of

D with center ag. Therefore by uniqueness τ g
a = τag and, especially, τa is in

the center of the stabilizer of a in Aut(D).
In particular if {a, b, c} ∈ L, then

τbτaτb = τ τb
a = τc = τ τa

b = τaτbτa

and therefore
(τaτb)3 = (τaτbτa)(τbτaτb) = τ2

c = 1 .

If τx and τy are two central automorphisms of D, then either they are in
di�erent �bers and so conjugate in 〈τx, τy〉 ' Sym(3), or they are in the
same �ber and so both conjugate to τz where z ∈ {a, b} is not in the �ber
of x and y.

If l is a line of L with l ∩ {p | τp ∈ T} ⊃ {x, y}, say, then τz = τ
τy
x ∈ T ,

where l = {x, y, z}.

The stength of the proposition can be seen in

Corollary 2.4. Suppose that a, b, c are from di�erent �bers of D and that
τa, τb, τc ∈ Aut(D). Then 〈τa, τb, τc〉 is a quotient of (Z× Z) : Sym(3).

Proof. (Z×Z) : Sym(3) is the Weyl group of a�ne type Ã2 with presenta-
tion 〈x, y, z | 1 = x2 = y2 = z2 = (xy)3 = (xz)3 = (yz)3〉. (This has a direct
proof. The subgroup N = 〈xyzy, yxzx, zxyx〉 = 〈xyzy, yxzx〉 is easily seen
to be normal and abelian, and the whole group is N extended by 〈x, y〉
which is isomorphic to Sym(3).)

The proposition shows that there is a unique maximal subdesign D0 of D
with the property that every central automorphism of D0 exists and extends
to a central automorphism of D. It is also true that (in a sense which will
be made precise at the end of Section 4.2 below) there is a unique maximal
quotient design of D that admits all possible central automorphisms.
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3. Central automorphisms and loops
Let D = (P,L) be a Latin square design with �bers OR, OC , and OE

for the underlying set O. Any permutation (α, β, γ) from the base group
Sym(OR)× Sym(OC)× Sym(OE) acts on P = OR ∪OC ∪OE , producing
a Latin square design isomorphic to D. At the level of Latin squares, this
corresponds to passing to an equivalent Latin square by permuting rows,
permuting columns, and permuting the entry labels. In the quasigroup
context, we are speaking of an isotopic quasigroup (O, ¦) given by

x ◦ y = z ⇐⇒ xα ¦ yβ = zγ ; that is, p ¦ q = (pα−1 ◦ qβ−1
)γ .

It is well-known and easy to see that every Latin square on the set
O = {1, 2, . . . , n} is equivalent to one whose �rst row and �rst column
are 1, 2, . . . , n in order. That is, every quasigroup is isotopic to a loop,
a quasigroup with a two-sided identity element 1. In particular, in the
equation xy = 1, the element x determines its right inverse y uniquely and
y determines its left inverse x uniquely. We write x−1 = y and −1y = x.

For the loop L = (L, ·) (with mild abuse) we let D(L) = D be the Latin
square design with point set P = LR ∪LC ∪LE and line set L given by the
Cayley table of L:

{aR, bC , cE} ∈ L ⇐⇒ a · b = c .

The basic question we approach here is: how is the existence of central
automorphisms of D(L) re�ected in the algebraic properties of the loop L?

To simplify our notation, for each a ∈ L we will write ρa in place of τaR ;
κa in place of τaC ; and εa in place of τaE . (This notation indicates that
the central automorphism has center corresponding to, respectively, a row,
column, or entry of the associated Latin square.)

3.1. Inverse property loops
Lemma 3.1.

(a) κ1 ∈ Aut(D(L)) if and only if L has the right inverse property
(xy)(−1y) = x for all x, y ∈ L. In this case inverses are two-sided
(that is, −1x = x−1 and (x−1)−1 = x always) and xκ1

C = x−1
C .

(b) ρ1 ∈ Aut(D(L)) if and only if L has the left inverse property
x−1(xy) = y for all x, y ∈ L. In this case inverses are two-sided
and xρ1

R = x−1
R .
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(c) ε1 ∈ Aut(D(L)) if and only if L has the anti-automorphic inverse
property (xy)−1 = y−1x−1 for all x, y ∈ L. In this case inverses
are two-sided and xε1

E = x−1
E .

Proof. We prove part (a) in detail, the other two parts being similar. (In-
deed they are equivalent to (a) in conjugates of the loop L.) Pictures of the
following type are helpful.
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Suppose we have xy = 1 in L. We then have

1 · x = x , x · 1 = x , and x · y = 1 ,

giving in D(L) the three lines {1R, xC , xE}, {xR, 1C , xE}, and {xR, yC , 1E},
which are drawn in the picture along with the line {1R, 1C , 1E}.

Assume that κ1 is an automorphism of D(L). Then 1κ1
C = 1C and the

lines {1R, 1C , 1E} and {xR, 1C , xE} through 1C are mapped to themselves
via

1κ1
R = 1E , 1κ1

E = 1R , xκ1
R = xE , xκ1

E = xR .

Therefore

{1R, xC , xE}κ1 = {1κ1
R , xκ1

C , xκ1
E } = {1E , xκ1

C , xR} = {xR, yC , 1E} ,

since a line of D is uniquely determined by any two of its points. In partic-
ular xκ1

C = yC and also yκ1
C = xC (as κ1 has order 2). The �rst equality says

that (in the �ber LC) every element of L is moved by κ1 to its right inverse,
but the second equality says that every element is moved by κ1 to its left
inverse. Therefore right inverses are always equal to left inverses. That is,
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each x has a two-sided inverse −1x = x−1, (x−1)−1 = x, and xκ1
C = x−1

C , as
claimed.

Next consider, for arbitrary x, y ∈ P:
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The lines here come from the equations

x · y = xy , xy · 1 = xy , x · 1 = x , (xy) · y−1 = (xy)y−1 .

The image of the line {xR, yC , xyE} under κ1 is the line

{xκ1
R , yκ1

C , xyκ1
E } = {xE , y−1

C , xyR} = {xyR, y−1
C , xE} .

As {xyR, y−1
C , (xy)y−1

E } is clearly a line of L, we conclude that x = (xy)y−1,
proving the right inverse property.1

Now assume that L has the right inverse property. Thus (−1yy)(−1y) =
−1y, hence (by cancellation) inverses are two-sided. The line {xR, yC , xyE}
is generic in L, and the picture above shows that its image under κ1 is also
a line (with the image of yC under κ1 de�ned to be y−1

C ). Therefore this κ1

is a central automorphism of D(L).

If ρ1, κ1, and ε1 are all automorphisms of D(L), then L is called an
inverse property loop. Since the group 〈ρ1, κ1, ε1〉 is a copy of Sym(3) (by
Proposition 2.3 or direct calculation) and so is generated by any two of the
three central automorphisms in it, we have the immediate

1 This argument illustrates how Reidermeister [29], Thomsen [31], Bol [2], and others
were able to relate the closure of certain geometric con�gurations to identities satis�ed
by coordinatizing binary systems.
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Corollary 3.2. If the loop L has any two of the right inverse property, the
left inverse property, and the anti-automorphic inverse property, then it is
an inverse property loop and has all three properties.

3.2. Bol loops
Proposition 3.3. Let L be a loop with κ1 ∈ Aut(D(L)). Then, for the
element x of L, we have κx ∈ Aut(D(L)) if and only if we have

a((xb)x) = ((ax)b)x

for all a, b in L. In this case yκx = (xy−1)x for all y in L.

Proof. As κ1 ∈ Aut(D(L)) by hypothesis, L has the right inverse property
by Lemma 3.1. In particular, inverses are two-sided.

Assume κx is an automorphism and consider
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As L has the right inverse property, in picture the top line

{xbR, b−1
C , (xb)b−1

E } = {xbR, b−1
C , xE}

is indeed in L. The image of this line under the automorphism κx is then
the line {1R, (b−1)κx

C , (xb)xE}. Therefore (b−1)κx = (xb)x; and so yκx =
(xy−1)x, for all y ∈ L, as claimed.

The above picture is the a = 1 case of
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where again the top line is valid because of the right inverse property. We
conclude that, for all a, b ∈ L,

a((xb)x) = ((ax)b)x

as desired.
Conversely assume that in the right inverse property loop L we have

a((xb)x) = ((ax)b)x, for a �xed x and all a, b. Let {pR, qC , pqE} be an
arbitrary line of D(L). Consider
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We use the given property and the right inverse property (twice) to calculate

((pq)x−1)((xq−1)x) = (((pq)x−1)x)q−1)x = ((pq)q−1)x = px .

This shows that, with the image of qC under κx de�ned to be (xq−1)x, the
image of {pR, qC , pqE} is indeed a line. Therefore κx is a central automor-
phism of D(L) with center xC , as desired.
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The identity
a((xb)x) = ((ax)b)x

is called the right Bol identity, and a loop in which this holds for all a, b, x
is a right Bol loop.
Theorem 3.4. Let L be a loop. Then L is a right Bol loop if and only if
κx ∈ Aut(D(L)) for all x of L.

Proof. Setting b = −1x in a((xb)x) = ((ax)b)x, we learn that a right Bol
loop has the right inverse property. Therefore the theorem is an immediate
consequence of Proposition 3.3.

As already mentioned, trading L for an isotopic loop corresponds to
replacing D(L) with an isomorphic Latin square design. Since this clearly
does not a�ect the existence of central automorphisms, we have immediately
the well-known
Theorem 3.5.

(a) All loop isotopes of a right Bol loop are right Bol loops [26, IV.6.15].
(b) The loop L is a right Bol loop if and only if all its loop isotopes are

right inverse property loops [26, II.3.9].
Corresponding to the right Bol identity we have the left Bol identity

(x(ax))b = x(a(xb)) .

A loop in which the left Bol identity holds for all a, b, x is a left Bol loop.
The corresponding versions of the previous three results remain true (by
passing to the opposite loop given by x ¦ y = y · x).
Proposition 3.6. Let L be a loop with ρ1 ∈ Aut(D(L)). Then, for the
element x of L, we have ρx ∈ Aut(D(L)) if and only if we have

(x(ax))b = x(a(xb))

for all a, b in L. In this case yρx = x(y−1x) for all y in L.

Theorem 3.7. Let L be a loop. Then L is a left Bol loop if and only if
ρx ∈ Aut(D(L)) for all x of L.

Theorem 3.8.
(a) All loop isotopes of a left Bol loop are left Bol loops.
(b) The loop L is a left Bol loop if and only if all its loop isotopes are

left inverse property loops [26, II.3.8].
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Many of the properties of Bol loops can be easily derived in this context.
For x in the loop L, de�ne powers of x recursively by

x0 = 1, xn = (xn−1)x, and x−n = (x−1)n for n ∈ Z+ .

The order of x, written |x|, is the smallest positive integer n (if any) with
xn = 1. Otherwise x has in�nite order.

Lemma 3.9. Let L be a loop with κ1, κx ∈ Aut(D(L)) for some x of L.
(a) For arbitrary a ∈ L and integers i, j, we have (axi)(xj) = axi+j.

In particular xi+j = xixj and (xi)−1 = (x−1)i.
(b) κxn ∈ Aut(D(L)) and (κxκ1)n = κxnκ1. In particular |x| = |κxκ1|.

Proof. (a) We show that (a) follows from (b) (indeed from (b) with n ∈
{i, j, i + j}). For arbitrary z with κz ∈ Aut(D(L)) and arbitrary a ∈ L, we
have

aκzκ1
R = azκ1

E = azR .

Therefore

axi+j
R = a

κ
xi+j κ1

R = a
(κxκ1)i+j

R = a
(κxκ1)i(κxκ1)j

R = a
(κxiκ1)(κ

xj κ1)

R = (axi)xj
R ,

as claimed.
(b) For κz ∈ Aut(D(L)) and arbitrary y ∈ L we have yκz

C = (zy−1)zC

by Proposition 3.3. Therefore if κy ∈ Aut(D(L)) then by Proposition 2.3
κzκyκz = κ(zy−1)z. In particular κ1κyκ1 = κy−1 and (κyκ1)−1 = κ1κy =
κy−1κ1, so (b) for negative n follows from (b) for positive −n.

We prove κxn ∈ Aut(D(L)) and (κxκ1)n = κxnκ1 for nonnegative n by
induction, the result being clear for n = 0, 1. Let n > 1 and assume the
result for 0 6 k 6 n. Using the previous paragraph, induction, and (a) with
{i, j} = {1, n− 1}, we �nd

κxn+1κ1 = κxnxκ1

= κ(xxn−1)xκ1

= κxκ(xn−1)−1κxκ1

= κxκ1κxn−1κ1κxκ1

= κxκ1(κxκ1)n−1κxκ1

= (κxκ1)n+1 ,

as desired. As κx and κ1 are in Aut(D(L)), so is κxn+1 = (κxκ1)n+1κ1.
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Corollary 3.10. [26, IV.6.6] Right Bol loops are power associative.

Of course, the same result is true for left Bol loops as well.
For loops admitting ε1 and εx there does not seem to be a nice counter-

part to the Bol identities. The following more specialized result is important
in the next section.

Proposition 3.11. Let L be an inverse property loop. Then, for the element
x of L, we have εx ∈ Aut(D(L)) if and only if we have

(xa)(bx) = (x(ab))x

for all a, b in L. In this case (xy)x = x(yx) and yεx = x(y−1x), for all y
in L.

Proof. Consider the picture
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Here we have the line {xaR, a−1
C , xE} because of the right inverse property,

line {b−1
R , bxC , xE} because of the left inverse property, and {b−1

R , a−1
C , (ab)−1

E }
because of the anti-automorphic inverse property.

Suppose εx is an automorphism of D(L). Setting b = 1 we �nd (a−1
E )εx =

(xa)xE , and setting a = 1 we �nd (b−1
E )εx = x(bx)E . Therefore εx can only

be an automorphism if yεx
E = x(y−1x)E and (xy)x = x(yx) for all y in L.

As {b−1
R , a−1

C , (ab)−1
E } is certainly a generic line of D(L), we see that εx

(extended to LE as in the previous paragraph) is an automorphism of D(L)
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if and only if (xa)(bx) is equal to ((ab)−1)εx for all a, b. That is, if and only
if

(xa)(bx) = (x((ab)−1)−1)x = (x(ab))x

for all a, b.

3.3. Moufang loops
We begin with a result that could well have been in the previous section.
Theorem 3.12. For the loop L, the following are equivalent:

(1) for each of its points p, the Latin square design D(L) admits a
central automorphism with center p;

(2) εx ∈ Aut(D(L)) for all x ∈ L and L has the right inverse property;
(3) εx ∈ Aut(D(L)) for all x ∈ L and L has the left inverse property;
(4) L is an inverse property loop with εx ∈ Aut(D(L)) for all x ∈ L;
(5) L is right Bol and εx ∈ Aut(D(L)) for some x ∈ L;
(6) L is left Bol and εx ∈ Aut(D(L)) for some x ∈ L;
(7) L is right Bol and ρx ∈ Aut(D(L)) for some x ∈ L;
(8) L is left Bol and κx ∈ Aut(D(L)) for some x ∈ L;
(9) L is right Bol and has the anti-automorphic inverse property;

(10) L is left Bol and has the anti-automorphic inverse property;
(11) L is right Bol and has the left inverse property;
(12) L is left Bol and has the right inverse property;
(13) L is an inverse property loop that is is right Bol;
(14) L is an inverse property loop that is is left Bol;
(15) L is right Bol and left Bol.

Proof. By previous results, each of the conditions (2) − (15) is equivalent
to there being a �ber F of D(L) and at least one additional point p /∈ F
such that D(L) admits central automorphisms with center p and each f of
F . This condition is clearly a consequence of (1), so it remains to prove
that conversely this condition implies (1).

Let the �bers of D(L) be F , G, and H with p ∈ G. Then τp switches F
and H, and so

Aut(D(L)) ⊃ { τh |h ∈ H } = { τf | f ∈ F }τp .

Next for q ∈ H we have

Aut(D(L)) ⊃ { τg | g ∈ G } = { τf | f ∈ F }τq .

This gives (1).
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Theorem 3.13. Let L be a loop. Then each of the following conditions is
equivalent to the others and to all the condition of Theorem 3.12.

(M1) (xa)(bx) = (x(ab))x for all x, a, b in L.
(M2) (xa)(bx) = x((ab)x) for all x, a, b in L.
(M3) ((ax)b)x = a(x(bx)) for all x, a, b in L.
(M4) ((xa)x)b = x(a(xb)) for all x, a, b in L.
(M5) For each of its points p, the Latin square design D(L) admits a

central automorphism with center p.

Proof. Condition (M5) is, of course, condition (1) of Theorem 3.12.
If we substitute a = 1 into conditions (M1) and (M3) and b = 1 into

(M2) and (M4), then we get the �exible law (xc)x = x(cx), for all c, x ∈ L.
In particular conditions (M1) and (M2) are equivalent, since they di�er only
by an application of the �exible law on the righthand side.

By Proposition 3.11, being an inverse property loop with condition (M1)
is equivalent to condition (4) of Theorem 3.12. So we show that condition
(M1) forces a loop to be an inverse property loop.

With x = −1b in (M1), an application of the �exible law gives
−1ba = (−1ba)(b(−1b)) = (−1b(ab))(−1b) = −1b((ab)(−1b)) .

We cancel −1b on the left to get the right inverse property a = (ab)(−1b).
Similarly, setting x = a−1, we �nd

ba−1 = (a−1a)(ba−1) = (a−1(ab))a−1 .

The two righthand a−1's cancel to give b = a−1(ab) for all a, b, and this is
the left inverse property. Therefore conditions (M1) and (M2) are equivalent
to all the conditions of Theorem 3.12.

Next consider condition (M3). An application of the �exible law gives
((ax)b)x = a((xb)x)), the right Bol identity. Also x = −1a in (M3) yields

b(−1a) = ((a(−1a))b)(−1a) = a(−1a(b(−1a))) ,

which for z = b(−1a) reads z = a(−1az), a version of the left inverse prop-
erty. Therefore (M3) implies condition (11) of Theorem 3.12. Conversely,
assume as in (11) of Theorem 3.12 that the loop L is a right Bol loop
with the left inverse property. (In particular, inverses are two-sided.) Set
a = x−1 in the right Bol identity to get

bx = ((x−1x)b)x = x−1((xb)x)) .
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The left inverse property then gives x(bx) = (xb)x, the �exible law. But
given the �exible law, condition (M3) and the right Bol identity are equiv-
alent. Therefore (M3) is equivalent to condition (11) of Theorem 3.12.

A similar argument to that of the previous paragraph shows that con-
dition (M4) is equivalent to being a left Bol loop with the right inverse
property, condition (12) of Theorem 3.12. (Alternatively, (M4) is (M3) in
the opposite loop.)

Loops that satisfy all the conditions of the two theorems above are called
Moufang loops after Ruth Moufang [21] who �rst studied the four conditions
(M1) � (M4) of Theorem 3.13. Bol [2] �rst proved the equivalence of these
four conditions, and the further equivalence with conditions (9) � (15) is
well-known. (See, for instance, [26, II.3.10,IV.6.9].) The identity (M4) was
Moufang's original condition, but various authors choose any one of the four
conditions to de�ne Moufang loops. Bruck [3, p. 116] and P�ugfelder [26,
p. 89] prefer (M1).

Here we are particularly interested in condition (M5). The equivalence
of algebraic identities like those of Moufang and Bol with the existence
of various geometric automorphisms, in turn equivalent to the closure of
certain geometric �gures (as seen in the proofs above), goes back to Veblen
and Young [33] (who considered automorphisms of projective planes and
their relationship to Desargues' con�gurations) and to Reidermeister [29],
Thomsen [31], Bol [2], and their collaborators who worked on 3-nets (3-
webs) of parallel classes of lines in the projective plane. See also Bruck
[3] and Pickert [27]. Tits [32] studied automorphisms of nets and groups
with triality speci�cally in the context of the octonions and Cartan's triality
groups. The geometric study has been revived more recently, particularly in
the paper of Funk and P. Nagy [9] which describes in detail the relationships
between Bol re�ections on a 3-net (the dual of central automorphisms of a
Latin square design) and coordinatizing Bol loops. See also [16, 24].

As before, several of the well-known properties of Moufang loops are
immediate from the Theorem 3.13.

Theorem 3.14.
(a) All loop isotopes of a Moufang loop are Moufang loops [26, IV.4.2].
(b) The loop L is a Moufang loop if and only if all its loop isotopes are

inverse property loops [3, VII.2.3], [26, IV.4.3].
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3.4. Multiplication groups
If L is a loop (indeed a quasigroup) then for all x ∈ L the maps

R(x) : L −→ L given by aR(x) = ax

and
L(x) : L −→ L given by aL(x) = xa

are permutations of L. We then de�ne within Sym(L) the right multiplica-
tion group

MR(L) = 〈R(x) |x ∈ L 〉 ,
the left multiplication group

ML(L) = 〈L(x) |x ∈ L 〉 ,
and the multiplication group

M(L) = 〈R(x), L(x) |x ∈ L 〉 = 〈MR(L), ML(L)〉.
The inner mapping group is then the stabilizer of the identity in the multi-
plication group:

I(L) = {α ∈ M(L) | 1α = 1 } .

These groups are often useful. Indeed, in our proof of Lemma 3.9 we
veri�ed and made good use of the fact that the automorphism κzκ1 acted
as the permutation R(z) in its action on the �ber LR:

aκzκ1
R = azR = a

R(z)
R .

Following on from this we easily �nd
Proposition 3.15. Let L be a loop.

(a) If κ1, κz ∈ Aut(D(L)) for some z of L, then

κ1κz ∈ Sym(LR)× Sym(LC)× Sym(LE)

with
κ1κz = ( R(z−1), L(z)R(z), R(z)) .

(b) If ρ1, ρz ∈ Aut(D(L)) for some z of L, then

ρ1ρz ∈ Sym(LR)× Sym(LC)× Sym(LE)

with

ρ1ρz = ( R(z)L(z), L(z−1), L(z)) .
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We thus have

Theorem 3.16.
(a) If L is a right Bol loop, then the automorphism group

〈κ1κz | z ∈ L 〉 = 〈κxκy |x, y ∈ L 〉

acts as the right multiplication group MR(L) on the �bers LR and
LE.

(b) If L is a left Bol loop, then the automorphism group

〈 ρ1ρz | z ∈ L 〉 = 〈 ρxρy |x, y ∈ L 〉

acts as the left multiplication group ML(L) on the �bers LC and
LE.

(c) If L is a Moufang loop, then the automorphism group

〈 ρxρy, κxκy |x, y ∈ L 〉

acts as the multiplication group M(L) on each of the �bers LR, LC ,
and LE.

This theorem (phrased in the dual language of 3-nets and their Bol
re�ections) was one of the main results of Funk and Nagy [9]; and they
went on to explore many of its consequences, particularly for Bol loops.

The maps of the lemma and theorem are special cases of autotopisms
of the loop L. An autotopism of L is a triple

(α, β, γ) ∈ Sym(LR)× Sym(LC)× Sym(LE)

with
x · y = z ⇐⇒ xα · yβ = zγ .

So an autotopism is a self-isotopy (see Section ).
It is immediate that the autotopism group of L is canonically isomorphic

to BAut(D(L)), the normal base subgroup of Aut(D(L)) consisting of all
automorphisms of D(L) that leave each �ber globally �xed.

Let Aut(D(L))0 be the normal subgroup of Aut(D(L)) that is generated
by all central automorphisms. Its base subgroup

BAut(D(L))0 = Aut(D(L))0 ∩ BAut(D(L))

is in turn normal in Aut(D(L)). This is the subgroup of Theorem 3.16(c).
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A permutation α of the loop L is called a pseudo-automorphism 2 of L
if 1α = 1 and there is an autotopism (α, β, γ). We thus have by Theorem
3.16(c)

Proposition 3.17. [3, Lemma VII.3.2], [26, IV.1.6]. If L is a Moufang
loop, then the inner mapping group I(L) is a normal subgroup of the group
of all pseudo-automorphisms of L.

4. Wreath products and groups with triality
4.1. Wreath products
Let Ω be a �nite set and K a group. For each x ∈ Ω, let Kx be a copy of
K and set B =

⊗
x Kx, the base group. The symmetric group Sym(Ω) acts

on B via
kg

x = kx.g ,

for each g ∈ Sym(Ω). The full wreath product K o Sym(Ω) is then the
extension B.Sym(Ω).

The projection homomorphism is the map π : K o Sym(Ω) −→ Sym(Ω)
with kernel B. The augmented wreath product Wr(K,Ω) is the normal
subgroup of the full wreath product generated by the conjugacy class T =
(a, b)KoSym(Ω) containing the 2-cycle class of Sym(Ω). We call T the set of
transpositions of K o Sym(Ω). The quotient of K o Sym(Ω) by Wr(K, Ω)
is small � the largest abelian quotient of K. Therefore we can think of
K o Sym(Ω) and Wr(K, Ω) as essentially the same group.

Two distinct transpositions of Sym(Ω) have product of order 2 or 3.
Surprisingly this restricted set of product orders maintains in the full wreath
product. This is made precise in the following observation of Zara [34] and
Doro [8]. (See also [14, Theorem 1.1].)

Theorem 4.1. Let T be the transposition class of the full wreath product
K o Sym(Ω) with |Ω| > 3. Let the associated projection homomorphism be
π : K o Sym(Ω) −→ Sym(Ω). Then, for all t, r ∈ T , we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .
2 This de�nition is equivalent to the usual equational de�nition for a pseudo-auto-

morphism of a loop; see [26, Theorem III.4.14].
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That is, the product of two transpositions remains of order 2 or 3 in
the full wreath product unless the transpositions are in the same coset of
the base group. A nearly complete converse of this result was given in [14,
Theorem 1.2]:

Theorem 4.2. Let T be a conjugacy class of elements of order 2 in the group
G = 〈T 〉; and let π : G −→ Sym(Ω), with |Ω| ≥ 4, be a homomorphism in
which π(T ) is the transposition class of Sym(Ω). Further assume, for all
t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .

Then there is a group K with

G/Z(G) ' Wr(K,Ω)/Z(Wr(K, Ω)) .

4.2. Groups with triality
The case of Theorem 4.1 that is missing from the characterization Theorem
4.2 is that of |Ω| = 3. The groups satisfying the hypotheses of Theo-
rem 4.2 with |Ω| = 3 have in fact been studied extensively, starting with
Glauberman [12] and Doro [8], under the name of groups with triality; see
[9, 16, 24, 32], for instance. Such groups need not arise from wreath prod-
ucts, Cartan's triality groups PΩ+

8 (F) :Sym(3), for F a �eld, furnishing the
canonical example (and the name).

We have a version of Theorem 4.2 for groups with triality. (In that case
the hypotheses can be streamlined somewhat.) This presents Glauberman
and Doro's correspondence between groups with triality and Moufang loops.

Theorem 4.3. Let T be a conjugacy class of elements of order 2 in the
group G = 〈T 〉, and let π : G −→ Sym(3) be a surjective homomorphism.
Further assume, for all t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = 3.

Then there is a Moufang loop L (unique up to isotopy) with

G/Z(G) ' Aut(D(L))0 ,

where the class T of size 3|L| maps bijectively to the class of central au-
tomorphisms of Aut(D(L))0, the subgroup of Aut(D(L)) generated by all
central automorphisms.
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Conversely if L is a Moufang loop, then the group G = Aut(D(L))0

generated by the size 3|L| conjugacy class T of central automorphisms is a
group with triality and has the above properties with respect to the projection
map π given by

π(ρk) = (2, 3), π(κk) = (1, 3), π(εk) = (1, 2) ,

for all k ∈ L.

Proof. Given the group G with triality (as in the hypothesis), we form a
partial linear space D whose points are the members of the class T and whose
lines are the various triples of elements of T in a subgroup S ' Sym(3)
generated by members of T and having π(S) = Sym(3). Then D is a Latin
square design whose �bers are the three sets

TR = T ∩ π−1((2, 3)), TC = T ∩ π−1((1, 3)), TE = T ∩ π−1((1, 2)) .

G acts naturally by conjugation on D, the kernel of the action being Z(G),
the center of G. Each element t ∈ T acts on D as the central automorphism
τt with center t. Therefore by Theorem 3.13 there is a Moufang loop L,
unique up to isotopy, with D isomorphic to D(L).

The converse follows from Proposition 2.3 and Theorem 3.13.

In particular, we see that the Zara-Doro Theorem 4.1 in the case |Ω| =
3 is associated with the fact that a group is a special type of Moufang
loop. In the split octonions over the �eld F, the units of norm 1 form
a Moufang loop whose associated group with triality is Cartan's triality
group PΩ+

8 (F) :Sym(3).
The previous two theorems show that there are uniquely determined

minimal groups with triality (and �Ω-ality�), namely those with trivial cen-
ter. There are also uniquely determined maximal (universal) groups, those
with the largest possible center compatible with the hypotheses. This comes
from intermediate results in [14] that also emphasize the connection between
Theorems 4.2 and 4.3. (See also [11, Prop. 2.5].) We �rst need a de�nition.

De�nition 4.4. For a loop L and �nite set Ω of size at least 3, the group
UWr(L,Ω) has the following presentation:

Generators:
〈〈k ; a , b〉〉 for arbitrary k ∈ L and distinct a, b ∈ Ω;

Relations:
for arbitrary k, h ∈ L and distinct a, b, c, d ∈ Ω (as possible):



40 J. I. Hall

(1) 〈〈k ; a , b〉〉2 = 1;
(2) 〈〈k ; a , b〉〉 = 〈〈k−1 ; b , a〉〉;
(3) 〈〈k ; a , b〉〉〈〈h ; b ,c〉〉 = 〈〈kh ; a , c〉〉;
(4) 〈〈k ; a , b〉〉〈〈h ; c ,d〉〉 = 〈〈k ; a , b〉〉.

The relation (4) is empty when |Ω| = 3.
By (3) the set T = { 〈〈k ; a , b〉〉 | k ∈ L, a, b ∈ Ω } is a conjugacy class of

UWr(L,Ω). The class need not be in bijection with the set of the various
(k, {a, b}) (for instance, by (2) if L does not have two-sided inverses).

It is routine to check that UWr(L,Ω) satis�es the hypotheses of The-
orem 4.2 (for |Ω| > 3) with respect to the class T and π(〈〈k ; a , b〉〉) =
(a, b) ∈ Sym(Ω). Indeed, if L is a group, then Wr(L,Ω) is a quotient of
UWr(L,Ω) (as suggested by Theorem 4.1) with the transposition class and
T in bijection (and so the kernel is central).

If L is a Moufang loop and Ω = {R, C,E} then, by Proposition 2.3 and
Theorem 3.13, Aut(D(L))0 is a homomorphic image of the group with trial-
ity UWr(L,Ω) and the class T of UWr(L,Ω) is in bijection with the class of
central automorphisms (so again the kernel is central). The homomorphism
and bijection are given by

〈〈k ; 2 , 3〉〉 7→ ρk, 〈〈k ; 1 , 3〉〉 7→ κk, 〈〈k ; 1 , 2〉〉 7→ εk .

(This also explains why we do not need relations describing the conjugations
〈〈k ; a , b〉〉〈〈h ; a ,b〉〉; by Corollary 2.4 such relations are consequences of those
already speci�ed.)

These two classes of examples are essentially all there are.
Theorem 4.5. Let T be a conjugacy class of elements of order 2 in the group
G = 〈T 〉; and let π : G −→ Sym(Ω), with |Ω| > 3, be a homomorphism in
which π(T ) is the transposition class of Sym(Ω). Further assume, for all
t, r ∈ T , that we have

if π(t) 6= π(r), then |π(t)π(r)| = |tr| .
Then there is a Moufang loop L (unique up to isotopy) and a central sub-
group Z of UWr(L,Ω) with

G ' UWr(L,Ω)/Z .

Here the class T has size 3|L| and is in bijection with the class {〈〈k ; a , b〉〉}
of UWr(L,Ω). The map π factors through the natural map that takes each
〈〈k ; a , b〉〉 to (a, b) ∈ Sym(Ω).

If additionally |Ω| > 4, then the Moufang loop L is a group.
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For |Ω| > 4 this is essentially [14, Theorem 3.7], which is the major step
in the proof of Theorem 4.2 (that is, [14, Theorem 1.2]). For |Ω| = 3 this
is essentially [14, Theorem 4.1] and is an easy consequence of Theorem 4.3
above and intermediate results proven in [14].

For |Ω| = 3 this theorem can also be thought of as locating a unique
largest Moufang quotient of a given loop or, equivalently, for each Latin
square design giving the unique maximal quotient design (possibly of order
1) that admits all possible central automorphisms (as promised at the end
of Section 2).

4.3. Generalized dihedral loops
The previous section suggests that one way of �nding nice Moufang loops
is to �nd nice groups with triality.3

A dihedral group G is one that has a normal cyclic subgroup H of index
2 such that every element g of G\H has order 2 and by conjugation inverts
all elements h of H; that is, gh = h−1g.

We say that the loop L is generalized dihedral precisely when it has a
subloop H of index 2 such that every element g of L \H has order 2 and
by conjugation inverts all elements h of H via gh = h−1g. Dihedral groups
provide examples of generalized dihedral Moufang loops.

A result of Chein [4, Theorem 1] gives

Theorem 4.6. If L is a generalized dihedral Moufang loop, then the subloop
H is a group. For any group H there is a generalized dihedral Moufang loop
L with H as its distinguished subloop of index 2, and such an L is uniquely
determined up to isomorphism.

A construction equivalent to Chein's was given by R.T. Curtis [6] but
was not published. Chein and Curtis gave the Cayley table of L in a simple
form which is derived from that of H.

Here the crucial but elementary observation is this:
The symmetric group Sym(3) = Sym({1, 2, 3}) is a homomorphic
image of Sym(4) = Sym({1, 2, 3, 4}) with transpositions mapped to
transpositions.

Therefore by Theorem 4.1 for any group H the augmented wreath prod-
uct group Wr(H, {1, 2, 3, 4}) is a group with triality and so is associated as

3 Equally well, nice groups with triality can be found from nice Moufang loops.
Witness the unit octonions and Cartan's triality groups.
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in the previous section with a Moufang loop L. The loop turns out to be
generalized dihedral.

Theorem 4.7. [14, Theorem 4.4] Let H be a group. Then the group
UWr(H, {1, 2, 3, 4}) is isomorphic to UWr(L, {1, 2, 3}), the universal group
with triality associated with the generalized dihedral Moufang loop L having
H as its distinguished subloop of index 2.

The theorem says that generalized dihedral Moufang loops come up
naturally, namely as those Moufang loops arising from groups with triality
that are full wreath products by the symmetric group of degree 4.

5. Simple Moufang loops
A nonidentity loop is simple if every surjective loop homomorphism is either
bijective or has image the identity. For instance, if in the split octonions
over a �eld F we take the Moufang loop of norm 1 elements and factor out
the center {±1}, then we have a simple loop P(F), called a Paige loop after
L.J. Paige who �rst observed and proved simplicity [25].

A group G with S ≤ Aut(G) is S-simple if the identity and G are the
only S-invariant normal subgroups of G. The group G is triality-simple if it
is S-simple for S ' Sym(3) and additionally the group G.S is a group with
triality with respect to the conjugacy class containing the transpositions of
S and kerπ = G.

Lemma 5.1. [8, Cor.1.1] Let L be a Moufang loop. Then L is simple if
and only if BAut(D(L))0 is triality-simple.

Lemma 5.2. [8, 23] Let G be a nonabelian triality-simple group. Then one
of:

(a) G.S ' N o Sym(3) for a nonabelian simple group N,
(b) G is simple.

In the second lemma, since S ' Sym(3) and G is nonabelian and S-
simple, there must be a nonabelian simple group N with G the direct prod-
uct of k copies of N for k ∈ {1, 2, 3, 6}. The case k = 1 is conclusion (b).
Doro showed that, for a triality-simple group, k = 6 is not possible and
k = 3 leads to conclusion (a). He also showed that in the special case
of �nite nonabelian triality-simple groups k = 2 cannot occur. Nagy and
Valsecchi later proved that for arbitrary nonabelian triality-simple groups
k = 2 leads to a contradiction.
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5.1. Finite simple Moufang loops
Liebeck [19], using the classi�cation of �nite simple groups, proved

Theorem 5.3. If G is a nonabelian �nite triality-simple group, then G.S
is one of:

(a) N o Sym(3) for a nonabelian �nite simple group N ,
(b) PΩ+

8 (F) :Sym(3) for a �nite �eld F.

With Lemmas 5.1 and 5.2 this yields

Theorem 5.4. [19, Theorem] A �nite simple Moufang loop is either asso-
ciative (and so a �nite simple group) or is isomorphic to a Paige loop P(F)
over a �nite �eld F.

Lagrange's Theorem says that every subgroup of the �nite group G
has order that divides the order of G. It had long been conjectured [5]
that Lagrange's Theorem remains true for �nite Moufang loops. A result of
Bruck [3, Lemma V.2.1] shows that Lagrange's Theorem is true for all �nite
Moufang loops if and only if it is true for all �nite simple Moufang loops. It
is certainly true in the �nite simple groups, so by Liebeck's Theorem 5.4 it
remained to check whether or not Lagrange's Theorem holds in �nite Paige
loops. This was recently done by several groups of people independently,
the �rst being Grishkov and Zavarnitsine [13]. Therefore we have

Theorem 5.5. [10, 11, 13, 20] Every subloop of the �nite Moufang loop L
has order that divides the order of L.

All of the proofs relate subloops of the octonions to subgroups of the
associated group with triality PΩ+

8 (F) :Sym(3) and then carefully study the
subgroup structure of this group.

Just a few years ago, it was possible to say [5] that the two most impor-
tant problems in loop theory were the Lagrange Property for �nite Moufang
loops and the existence of �nite simple Bol loops that are not Moufang. Now
both problems have been resolved positively. Nevertheless, as pointed out
by the referee, it is still open as to whether all �nite Bol loops have the
Lagrange Property. Bruck's result [3, Lemma V.2.1] again reduces this to
the case of simple loops. But Nagy's examples [22] of �nite simple Bol loops
that are not Moufang show that much remains to be done. In particular,
the corresponding result to Doro's Lemma 5.1 is false, since Nagy's smallest
example L (of order 24) has Aut(D(L))0 solvable.



44 J. I. Hall

5.2. Locally �nite simple Moufang loops
An algebraic object is locally �nite if each subobject generated by a �nite
subset is itself �nite. For example the algebraic closure Fp of any �nite �eld
Fp is a locally �nite �eld since any �nite subset of Fp lies in a extension
that has �nite degree over Fp and so is itself �nite. Indeed a �eld is locally
�nite precisely when it is isomorphic to a sub�eld of Fp for some prime p.

A great deal of work has been done in the last twenty-�ve years on the
classi�cation and properties of locally �nite simple groups (for instance,
[15, 18]). Certain techniques go over to Moufang loops, allowing us to
extend Liebeck's theorems by replacing every instance of ��nite� by �locally
�nite.�

Theorem 5.6. If G is a nonabelian locally �nite triality-simple group, then
G.S is one of:

(a) N o Sym(3) for a nonabelian locally �nite simple group N,

(b) PΩ+
8 (F) :Sym(3) for a locally �nite �eld F.

Theorem 5.7. A locally �nite simple Moufang loop is either associative
(and so a locally �nite simple group) or is isomorphic to a Paige loop P(F)
over a locally �nite �eld F.

All locally �nite �elds are countable, and a �nite dimensional algebra
over a countable �eld is countable. Therefore we have the remarkable

Corollary 5.8. An uncountable locally �nite simple Moufang loop is asso-
ciative and so is a locally �nite simple group.

The proofs will appear elsewhere. A crucial initial observation is that
the Moufang loop L is locally �nite if and only if the associated universal
group with triality UWr(L, 3) is locally �nite. This is proven using Theorem
4.5 above. The rest of the argument then uses the techniques of locally �nite
group theory as found in [15, 18].
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Loops related to geometric structures

Helmut Karzel

Abstract

There are many connections between loops and geometries:
• one can derive loops from several geometries and then use these loops for a "coordina�
tization" of the geometries,

• one can start from loops with certain properties and associate to them geometric stru�
ctures or

• one can use geometric structures � for instance "chain structures" or "graphs" � in or�
der to represent loops.

Some of these relations I like to discuss here.

1. Introduction and historical remarks
In many geometries we observe the following situation. There is a set P of
geometric objects (like points, lines, planes, circles etc.) and a distinct set
Γ of permutations of P (like collineations, motions, automorphisms etc.)
such that for any two objects a, b ∈ P there is exactly one permutation in Γ
� denoted by [a → b] � mapping a onto b. Thus the pair (P, Γ) is a regular
permutation set. Such a situation we obtain for instance if we take for P the
set of all points of an Euclidean, or more generally an absolute geometry, and
for Γ all re�ections in points. More precisely, many geometries (P, L,≡) (P
denotes the set of points, L the set of lines and ≡ the congruence relation)
in particular absolute and some unitary geometries have the properties:

1. For all a ∈ P there exists exactly one involutory motion ã with
Fix ã = {a}.

2. Any two points a, b ∈ P have exactly one midpoint m ∈ P hence
m̃(a) = b.

2000 Mathematics Subject Classi�cation: Primary 20N05.
Keywords: loop, quasigroup, Bol loop, loop derivation, re�ection structure, tranversal.



48 H. Karzel

3. For all a,b ∈ P it holds ˜̃a(b) = ã ◦ b̃ ◦ ã.

Now if (P, Γ) is a regular permutation set and if we �x an arbitrary
element o ∈ P , then the set P becomes with respect to the binary operation,

a + b := [o → a] ◦ [o → o]−1(b)

a loop (P, +). This construction we call loop derivation of (P, Γ) in the
element o. On the other side, for a given loop (P, +) we obtain a regular
permutation set. For a ∈ P let a+(x) := a+x, hence a+ is a permutation of
P . Let P+ := {p+ | p ∈ P}, ν : P → P ; x 7→ (x+)−1(o) and a◦ := a+ ◦ ν.
Then the pair (P, P ◦) with P ◦ := {p◦ | p ∈ P} is a regular permutation set
� called the permutation derivation of (P, +) � having the property that p◦

interchanges the elements o and p. The loop derivation of (P, P ◦) in the
element o reproduces the loop (P, +).

With these derivations we can translate properties of one structure in
properties of the other.

Any arbitrary permutation set (E, Γ) (i.e., we claim only that Γ is a
subset of the symmetric group SymE of the set E) can be represented as
a chain structure (P, G1, G2,K) (cf. section 7, 8, 9) and so also any loop
(E,+) via the permutation set (E,E+) and we have inter alia:

Let (E, Γ) be a permutation set and (P, G1,G2, K) the corresponding
chain structure, then (E,Γ) is regular (sharply 2-transitive; sharply 3-transi-
tive) if and only if (P, G1, G2,K) is a web (2-structure; hyperbola structure).

Of particular interest are invariant re�ection structures (P, Γ) and their
corresponding K-loops (= Bruck loops) (cf. section 6). Among these struc-
tures there are the ordinary point re�ection spaces (P, P̃ ) characterized by
the "three re�ection properties" (R1) and (R2) which allow us to de�ne
lines such that P together with the set L of all lines forms an incidence
space (P, L). Examples are the set P of points and the set P̃ of all point
re�ections of a hyperbolic space. If we �x a point o ∈ P in an ordinary
point re�ection spaces (P, P̃ ) and consider the loop derivation (P, +) in o,
then each line L ∈ L passing through o is a commutative subgroup of the
loop (P, +). Taking the loop (P, +) and the set F := {F ∈ L | o ∈ F} of
all lines containing o we obtain a "coordinatization" (P,+,F) of the point
re�ection space (P, P̃ ) like in analytic geometry where (P, +) is a vector
space and F the set of one dimensional vector subspaces. The points of the
corresponding point re�ection space or a�ne space, respectively, are the
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elements of P and the lines are in both cases the cosets a + F with a ∈ P
and F ∈ F (cf. Theorems 10.1, 11.5, 11.6).

Now we give some historical remarks on incidence groups and the gen-
eralisation to geometric spaces with a loop structure. A tripel (P, L, ·)
consisting of a group (P, ·) and an incidence space (P, L) such that for each
a ∈ P the map

a· : P → P ; x 7→ a · x
is a collineation of the incidence space (P, L) is called incidence group. Of
interest there are the following subclasses. An incidence group (P, ·, L) is
called:

�bered if any line L ∈ L containing the neutral element e of the
group (P, ·) is a subgroup of (P, ·),

2-sided if for all a ∈ P also the map ·a : P → P ; x 7→ x · a
is a collineation of the incidence spacs (P, L),

kinematik space if (P, L, ·) is �bered and 2-sided.
If (P, L, ·) is an incidence group then the set F := {L ∈ L | e ∈ L}

is a bundle in e, i.e.,
⋃

F = P and for all A,B ∈ F with A 6= B it holds
A∩B = {e}, and we have L = {a ·F | a ∈ P, F ∈ F}. If (P, L, ·) is �bered
then F is a �bration (partition) of the group (P, ·), i.e., F is a bundle and a
set of proper subgroups of the group (P, ·). If (P, L, ·) is even a kinematik
space then F is a kinematik �bration, i.e., F has the additional property that
for all X ∈ F and for all a ∈ P it holds a ·X ·a−1 ∈ F. On the other hand,
if F is a bundle of a group (P, ·) in the neutral element e of (P, ·) and if we
set L := {a · F | a ∈ P, F ∈ F} then (P, L, ·) is an incidence group if and
only if the following condition is satis�ed:

(f) ∀a ∈ P ∀X ∈ F e ∈ a ·X ⇒ a ·X ∈ F.

Clearly if F is a �bration of the group (P, ·) then F satis�es the condition
(f) and so there is a one to one correpondence between �bered incidence
groups (kinematik spaces) and �brations (kinematik �brations) of groups.

The notion of incidence group was generalized by weakening the assump-
tions concerning the algebraic structure. The group (P, ·) was replaced by a
loop or even a groupoid by H. Wähling, G. Kist, M. Marchi, E. Zizioli and
the author (cf. [8], [26], [18], [22], [11], [27]). In [11] the concepts "�bration"
and "kinematic �bration" were used also for loops. In 1987 Elena Zizioli
found out that for a general loop these notions are not enough to produce
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a �bered incidence loop. She showed that the conditions (f) = (F4) and
(F5) (cf. section 11) are necessary and su�cient. Such �brations (satisfying
(F4) and (F5)) are called incidence �brations (cf. [27], [16], [18] Sec. 8).

E. Kolb and A. Kreuzer [19] de�ned in a loop (P, +) with the help of the
defect function δa,b (cf. section 5) the binary relation "a ∼ b ⇔ δa,b = id".
Under the assumption that ∼ is an equivalence relation, they showed that
the equivalence classes form an incidence �bration.

2. Notations and known results
Permutation sets. In this paper P will always denote a non empty set,
SymP the group of all permutations of the set P , J := {σ ∈ SymP | σ2 =
id} and J∗ := J \{id}. A pair (P, Γ) with Γ ⊆ Sym P is called permutation
set and we call a permutation set

Bol set if for each γ ∈ Γ, γ ◦ Γ ◦ γ = Γ,
symmetric if for each γ ∈ Γ, γ ◦ Γ−1 ◦ γ = Γ,
invariant if for each γ ∈ Γ, γ ◦ Γ ◦ γ−1 = Γ,
involution set if Γ ⊆ J .

For a permutation set (P, Γ) we de�ne for a, b ∈ P :

[a → b] := {γ ∈ Γ | γ(a) = b}.

Then we call a point p ∈ P semiregular (transitive), if for each x ∈ P
we have |[p → x]| 6 1 ( |[p → x]| > 1), and we call p ∈ P regular if
|[p → x]| = 1.

By Ps (Pt) we denote the set of all semiregular (transitive) points and
by Pr or (P, Γ)r the set of all regular points of (P, Γ). The pair (P, Γ) is
called regular permutation set if P = Pr.

2.1. Let (P, Γ) be a permutation set. Then:
(1) (P, Γ) is a Bol set if and only if (P,Γ) is symmetric and Γ = Γ−1.
(2) If (P, Γ) is symmetric and σ ∈ Sym P then (P, σ ◦ Γ) is symmetric.
(3) If (P, Γ) is symmetric and σ ∈ Γ then (P, σ−1 ◦ Γ) is a Bol set with

id ∈ σ−1 ◦ Γ.
(4) If (P, Γ) is a Bol set and σ ∈ SymP with σ ◦ Γ ◦ σ = Γ, in particular

if σ ∈ Γ, then (P, σ ◦ Γ) is a Bol set.
(5) If (P, Γ) is an involution set then the notions "symmetric", "Bol set"

and "invariant" coincide.
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Proof. (1) If (P, Γ) is a Bol set and γ ∈ Γ then γ ◦ Γ ◦ γ = Γ implies
γ−1 ◦ Γ ◦ γ−1 = Γ hence γ−1 ◦ γ ◦ γ−1 = γ−1 ∈ Γ, i.e., Γ−1 = Γ and so
γ ◦ Γ−1 ◦ γ = γ ◦ Γ ◦ γ = Γ.

(2) Let γ ∈ Γ then (σ ◦γ)◦ (σ ◦Γ)−1 ◦ (σ ◦γ) = σ ◦γ ◦Γ−1 ◦σ−1 ◦σ ◦γ =
σ ◦ (γ ◦ Γ−1 ◦ γ) = σ ◦ Γ hence (P, σ ◦ Γ) is symmetric.

(3) By (2) σ−1 ◦ Γ is symmetric and σ ◦ Γ−1 ◦ σ = Γ implies σ−1 ◦ Γ =
Γ−1 ◦ σ = (σ−1 ◦ Γ)−1, i.e., by (1) (P, σ−1 ◦ Γ) is a Bol set.

(4) follows in the same way as (2).

Binary operation. If P is provided with a binary operation ” + ”, we
de�ne for a ∈ P :

a+ : P → P ; x 7→ a + x,

+a : P → P ; x 7→ x + a,

P+ := {a+ | a ∈ P} and +P := {+a | a ∈ P}.
An element o ∈ P is called left (right) zero element if o+ = id (+o = id),
and zero element if o+ = +o = id. (P, +) is called left (right) quasigroup
if P+ ⊆ Sym P (+P ⊆ Sym P ) and quasigroup if P+ ∪ +P ⊆ Sym P , and
left (right) loop or loop, respectively, if moreover (P, +) has a zero element.

If (P, +) is a left loop, hence P+ ⊆ Sym P , then for all a, b ∈ P also

δa,b := ((a + b)+)−1 ◦ a+ ◦ b+ ∈ Sym P

is a permutation �xing the element o. Therefore to each left loop (P, +)
there corresponds the subgroup ∆ := 〈{δa,b | a, b ∈ P}〉 of Sym P , generated
by all these maps. We have:

2.2. (P, +) is a quasigroup if and only if (P, P+) is a regular permutation
set.

2.3. Let (P,Γ) be a permutation set with Pr 6= ∅ , let o ∈ Pr be �xed and
for a, b ∈ P we de�ne a• := [o → a], P • := {a• | a ∈ P} and

a⊕ b := [o → a](b) = a•(b),
a + b := [o → a] ◦ [o → o]−1(b) = a• ◦ (o•)−1(b).

Then
(1) P • = Γ.
(2) (P,⊕) is a left quasigroup with the property "∀a ∈ P : a⊕ o = a".
(3) (P, +) is a left loop with o as zero element.
(4) If (P, Γ) is invariant then (P, Γ) is a regular permutation set, hence
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P = Pr.
(5) If (P, Γ) is a regular permutation set then (P,⊕) is a quasigroup

with the right zero element o, and (P, +) is a loop with the zero
element o.

Proof. (4) Let a, b ∈ P be given, let c := [o → a]−1(b), γ := [o → a] ◦ [o →
c] ◦ [o → a]−1 and d := γ(o) then (by the invariance) γ ∈ Γ, hence (by
o ∈ Pr) γ = [o → d] and γ(a) = [o → a] ◦ [o → c](o) = [o → a](c) = b.
Therefore γ is the unique element in Γ mapping a onto b.

De�nition 1. If (P, Γ) is a permutation set with Pr 6= ∅ and p ∈ Pr, let
p̃ := [p → p], P̃r := {p̃ | p ∈ Pr}. Then for each p ∈ Pr the binary operation

+p : P × P → P ; (a, b) 7→ a + b := [p → a] ◦ p̃−1(b)

is called the loop derivation of (P, Γ) in the point p. Moreover if (P, Γ) is
regular and o ∈ P we set:

ν = νo : P → P ; x 7→ õ ◦ [o → x]−1(o),

ω = ωo := õ−1 ◦ ν : P → P ; x 7→ [o → x]−1(o),

P ◦ := Γ ◦ ω = {a◦ := [o → a] ◦ ω | a ∈ P}.
We remark that ν(x) = [o → o] ◦ [o → x]−1(o) = (x+)−1(o) and we denote

−x := ν(x) = (x+)−1(o).

For a, b ∈ P we write a− b := a + (−b).

2.4. If (P, +) is a left loop and µ ∈ Sym P any permutation with µ(o) = o,
then (P, P+ ◦ µ) is a permutation set with o ∈ (P, P+ ◦ µ)r and the loop
derivation of (P, P+ ◦ µ) in the point o gives us back the original left loop
(P, +).

De�nition 2. Let (P, +) be a left loop with −x = ν(x). If ν ∈ Sym P , let
P ◦ := P+ ◦ ν = {x◦ := x+ ◦ ν | x ∈ P}. Then (P, P ◦) is called permutation
derivation of the left loop (P, +). If (P, +) is a loop and p ∈ P , let 2′p be
the solution of the equation x − p = p. Then p̃ := (2′p)◦ (recall that p̃ is
the unique permutation of P ◦ �xing p) and ˜̃p := p+ ◦ ν ◦ (p+)−1.
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2.5. If (P, +) is a left loop then:
(1) ν ∈ Sym P ⇔ o ∈ (P, (P+)−1)r.
(2) If (P, +) is obtained by the loop derivation of a permutation set

(P, Γ) in a point o ∈ (P, Γ)r then ν ∈ Sym P ⇔ o ∈ (P, õ ◦ Γ−1)r.
(3) If (P, +) is a loop then ν ∈ Sym P hence we can form the permu�

tation derivation (P, P ◦) and the loop derivation of (P, P ◦) in o
reproduces the original loop (P, +).

De�nition 3. A loop (P, +) is called:
(*)-loop if (*) ∀a, b ∈ P : a− (a− b) = b;
Bol loop if for all a, b ∈ P we have a+ ◦ b+ ◦ a+ ∈ P+, i.e.,

a + (b + (a + x)) = (a + (b + a)) + x and (P, P+)
is a Bol set;

Bruck loop or K-loop if (P, +) is a Bol loop and if ν ∈ Aut(P, +), i.e.,
−(a + b) = (−a) + (−b).

2.6. Let (P, Γ) be a Bol set with Pr 6= ∅ and (P, +) the loop derivation in
any point o ∈ Pr then (P, +) is a Bol loop. If (P, +) is any Bol loop then
the permutation derivation (P, P ◦) is a Bol set.

Proof. Let o ∈ Pr, (P, +) the loop derivation of (P, Γ) in o and let a, b ∈ P
then (cf. 2.3 ) a+ = a• ◦ (o•)−1, b+ = b• ◦ (o•)−1 and a+ ◦ b+ ◦ a+ =
a• ◦ (o•)−1 ◦ b• ◦ (o•)−1 ◦a• ◦ (o•)−1. Since (P,Γ) is a Bol set, o• ◦Γ ◦ o• = Γ
hence Γ = (o•)−1◦Γ◦(o•)−1 and so (o•)−1◦b•◦(o•)−1 ∈ (o•)−1◦Γ◦(o•)−1 =
Γ, i.e., by 2.3(1) there is a c ∈ P with c• = (o•)−1 ◦ b• ◦ (o•)−1 and so
a+ ◦ b+ ◦ a+ = a• ◦ C• ◦ a• ◦ (o•)−1. Again since (P, Γ) is a Bol set there
is a d ∈ P with a• ◦ C• ◦ a• = d• thus a+ ◦ b+ ◦ a+ = d• ◦ (o•)−1 ∈ P+.
Therefore (P, P+) is a Bol set. Moreover by 2.1(1), Γ = Γ−1 and so there
is an a′ ∈ P with a′• = o• ◦ (a•)−1 ◦ o•. Hence (a+)−1 = (a• ◦ (o•)−1)−1 =
o• ◦ (a•)−1 ◦ o• ◦ (o•)−1 = a′• ◦ (o•)−1 = a′+ ∈ P+. By [17] (3.10.3), (P, +)
is a Bol loop.

2.7. Let (P, +) be a left loop with ν ∈ Sym P and P ◦ := P+ ◦ ν then
o ∈ (P, P ◦)r and:

(1) a ∈ (P, P ◦)r ⇔ ∀x ∈ P ∃1x
′ ∈ P such that x = x′ − a.

(2) If a ∈ (P, P ◦)r and if +a is the loop derivation of (P, P ◦) in the
point a then for all p, q ∈ P it holds p +a q = p′ + (a′+)

−1
(q).

(3) If (P, +) is a Bol loop then (P, P ◦)r = P and for all a ∈ P it holds
p +a q = p′ + (−a′ + q) and x′ = a + ((−a + x) + a), in particular,
a′ = a + a =: 2a and moreover, (P, +a) is a Bol loop.
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Proof. (1) is a consequence of p◦(a) = p+ ◦ ν(a) = p + (−a) = p− a.
(2) If [a → p]◦ denotes the permutation of P ◦ mapping a onto p then

[a → p]◦ = p′+ ◦ ν in particular, ã = [a → a]◦ = a′+ and so by De�nition 1,
p +a q = [a → p]◦ ◦ ã−1(q) = p′+ ◦ ν ◦ (ν)−1 ◦ (a′+)−1(q) = p′ + (a′+)−1(q).

(3) For each loop we have (P, P ◦)r = P and in a Bol loop, (−a)+ =
(a+)−1, (2a)+ = (a+(o+a))+ = a+ ◦a+ and so (a+((−a+x)+a))−a =
a+◦(−a+x)+◦a+(−a) = a+◦(−a+x)+(o) = a+(−a+x) = x implying x′ =
a+((−a+x)+a). Consequently, p+a q = p′+(a′+)−1(q) = p′+(−a′+q) =
(a+((−a+p)+a))+(−2a+q) and therefore p+a = a+ ◦ (−a+p)+ ◦ (a+)−1

implying p+a ◦q+a ◦p+a = a+ ◦ (−a+p)+ ◦ (−a+q)+ ◦ (−a+p)+ ◦ (a+)−1 ∈
a+ ◦P+ ◦ (a+)−1. Thus if r := a + ((−a + p) + ((−a + q) + (−a + p))) then
p+a ◦ q+a ◦ p+a = r+a showing that (P, +a) is a Bol loop.

2.8. Let (P,Γ) be a regular permutation set, let o ∈ P be �xed and (P, +)
the loop derivation in o then:

(1) (P, P ◦) (cf. De�nition 1) is a regular permutation set and for each
a ∈ P , a◦ interchanges the points o and a.

(2) P ◦ = Γ ⇔ ∀x ∈ P : [o → x] = [x → o].
(3) If (P, Γ) is invariant then õ ◦ ν = ν ◦ õ and so ω = õ−1 ◦ ν = ν ◦ õ−1

and moreover:
P ◦ is invariant ⇔ ∀α ∈ Γ : α ◦ ω ◦ Γ = Γ ◦ ω ◦ α ⇔ Γ ∪ {ν} ⊆ N(P ◦).

(4) If P ◦ is invariant then P ◦ ⊆ J .

Proof. (1) By 2.3(5) and 2.5(3), ν ∈ SymP and so ω = õ−1 ◦ ν ∈ Sym P
hence P ◦ = Γ ◦ ω is a regular permutation set. Finally ω(o) = [o →
o]−1(o) = o, ω(a) = [o → a]−1(o) and so a◦(o) = [o → a] ◦ ω(o) = [o →
a](o) = a and a◦(a) = [o → a] ◦ ω(a) = [o → a] ◦ [o → a]−1(o) = o.

(2) By De�nition 1, P ◦ = Γ ⇔ ω = id ⇔ ν = õ ⇔ ∀x ∈ P : ν(x) =
(x+)−1(o) = õ ◦ [o → x]−1(o) = õ(x) ⇔ ∀x ∈ P : [o → x](x) = o ⇔ ∀x ∈
P : [o → x] = [x → o] (since (P, Γ) is a regular permutation set).

(3) Let x ∈ P then ν(x) = õ ◦ [o → x]−1(o) = õ ◦ [o → x]−1 ◦ õ−1(o) =
[o → õ(x)]−1(o) (since Γ is invariant) hence õ◦ν(x) = õ◦ [o → õ(x)]−1(o) =
ν(õ(x)) and so õ ◦ ν = ν ◦ õ.

Let P ◦ = Γ◦ω = Γ◦ õ−1 ◦ν be invariant and let α ∈ Γ then α◦ω ◦P ◦ =
α ◦ ω ◦ Γ ◦ ω = P ◦ ◦ α ◦ ω = Γ ◦ ω ◦ α ◦ ω hence α ◦ ω ◦ Γ = Γ ◦ ω ◦ α. For
α := õ and using the commutativity of õ and ν we obtain ν ◦ Γ = Γ ◦ ν
hence ω ◦Γ = õ−1 ◦ν ◦Γ = õ−1 ◦Γ◦ν = Γ◦ õ−1 ◦ν = Γ◦ω = P ◦. Together,
α ◦ P ◦ = α ◦ ω ◦ Γ = Γ ◦ ω ◦ α = P ◦ ◦ α.
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Now let Γ ∪ {ν} ⊆ N(P ◦). Then ν ◦ P ◦ = ν ◦ Γ ◦ ω = ν ◦ Γ ◦ õ−1 ◦ ν =
P ◦◦ν = Γ◦ω◦ν hence (using the commutativity), ν ◦Γ◦ õ−1 = Γ◦ õ−1◦ν =
Γ◦ν ◦ õ−1 and so ν ◦Γ = Γ◦ν. This implies ω◦Γ = õ−1◦ν ◦Γ = õ−1◦Γ◦ν =
Γ ◦ õ−1 ◦ ν = Γ ◦ ω = P ◦ and so ω ◦ P ◦ = ω ◦ Γ ◦ ω = P ◦ ◦ ω. Therefore if
α ◦ω ∈ P ◦ then by α ∈ N(P ◦), α ◦ω ◦P ◦ = α ◦P ◦ ◦ω = P ◦ ◦α ◦ω showing
that P ◦ is invariant.

(4) If a, b ∈ P we denote the map of P ◦ mapping a onto b by [a → b]′.
Now let ϕ ∈ P ◦, a ∈ P and b := ϕ(a) hence ϕ = [a → b]′. Since P ◦ is
invariant we have (a◦)−1 ◦ [a → b]′ ◦ a◦ = [o → (a◦)−1(b)]′. By (1) this
is equal [(a◦)−1(b) → o]′ = (a◦)−1 ◦ [b → a]′ ◦ a◦. Together we obtain,
ϕ = [b → a]′ hence ϕ(b) = a, i.e., ϕ ∈ J .

3. Isomorphisms
Let (P, Γ) and (P ′,Γ′) be permutation sets and let ψ : P → P ′ be a bijec-
tion. Then ψ is called isomorphism between (P, Γ) and (P ′, Γ′) and (P, Γ),
(P ′,Γ′) are called isomorphic, if Γ′ = ψ ◦ Γ ◦ ψ−1. An isomorphism ϕ is
called automorphism of (P, Γ) if (P, Γ) = (P ′, Γ′), hence Γ = ϕ ◦ Γ ◦ ϕ−1.
Thus the automorphism group Aut(P,Γ) is exactly the normalizer of Γ in
SymP . We call (P, Γ) homogeneous if Aut(P, Γ) acts transitively on P and
self homogeneous if for all a, b ∈ P it holds [a → b] ∩ Aut(P, Γ) 6= ∅.
Clearly if (P, Γ) is homogeneous and (P, Γ)r 6= ∅ then (P, Γ) is a regular
permutation set, and if (P, Γ) is invariant with (P, Γ)r 6= ∅, then (P, Γ) is
homogeneous (cf. 2.3(4)).

3.1. Let ψ : P → P ′ be an isomorphism from (P, Γ) onto (P ′, Γ′), let
(P, Γ)r 6= ∅ and o ∈ (P, Γ)r then o′ := ψ(o) ∈ ψ((P, Γ)r) = (P ′,Γ′)r and we
have:

(1) ∀a, b ∈ P ψ ◦ [a → b] ◦ ψ−1 = [ψ(a) → ψ(b)].
(2) ∀x ∈ P ψ ◦ [o → x] ◦ õ−1 = [o′ → ψ(x)]′ ◦ õ′

−1 ◦ ψ.
(3) If (P, +), (P ′, +′) are the loop derivations of (P, Γ) and (P ′, Γ′)

in o and o′, respectively, then ψ is an isomorphism from (P, +)
onto (P ′, +′) and also from the permutation derivation (P, P ◦) onto
the permutation derivation (P ′, p′◦

′
) (We have the formula: If a ∈ P

then ψ ◦ a◦ ◦ ψ−1 = (ψ(a))◦′).
(4) If (P, Γ) is invariant then for all a, b ∈ P and for each γ ∈ Γ:

γ ◦ [a → b] ◦ γ−1 = [γ(a) → γ(b)].
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Proof. Since ψ is an isomorphism we have for all a, b ∈ P : ψ◦[a → b]◦ψ−1 =
[ψ(a) → ψ(b)] and so by o′ = ψ(o), ψ(a + b) = ψ([o → a] ◦ [o → o]−1(b)) =
ψ[o → a]◦ψ−1◦ψ◦ [o → o]−1◦ψ(b)[ψ(o) → ψ(a)]◦ [ψ(o) → ψ(o)]−1(ψ(b)) =
ψ(a) +′ ψ(b).

3.2. Let o ∈ (P, Γ)r, o′ ∈ (P ′,Γ′)r, let (P, +) and (P ′, +′), resp., be the
loop derivations of (P, Γ) in o, and (P ′, Γ′) in o′, resp., and let ϕ be an
isomorphism from (P,+) onto (P ′, +′). Then:

(1) ϕ is also an isomorphism from (P, Γ) onto (P ′, Γ′) if and only if
ϕ ◦ õ = õ′ ◦ ϕ.

(2) If ν ∈ SymP , then ν ′ ∈ SymP ′ and ϕ is an isomorphism from the
permutation derivation (P, P ◦ = P+ ◦ν) of (P, +) onto the permu�
tation derivation (P ′, P ′◦) of (P ′, +′).

Proof. (1) For each a ∈ P we have a+ = [o → a] ◦ õ−1 and (ϕ(a))+
′

=
[o′ → ϕ(a)]′ ◦ õ′

−1, and since ϕ is an isomorphism, ϕ ◦ a+ = (ϕ(a))+
′ ◦ ϕ.

Together we obtain, ϕ ◦ [o → a] ◦ ϕ−1 ◦ ϕ ◦ õ−1 = [o′ → ϕ(a)]′ ◦ õ′
−1 ◦ ϕ.

This implies for a = o, [o′ → ϕ(o)]′ = õ′ and so o′ = ϕ(o), i.e., ϕ is only an
isomorphism from (P, Γ) onto (P ′,Γ′) if ϕ ◦ õ = õ′ ◦ ϕ and then ϕ ◦ [o →
a]◦ϕ−1 = [o′ → ϕ(a)]′ showing Γ′ = ϕ◦Γ◦ϕ−1 since Γ = {[o → a] | a ∈ P}
and Γ′ = {[o → ϕ(a)]′ | a ∈ P}.

(2) From o′ = ϕ(o) = ϕ(x + ν(x)) = ϕ(x) +′ ϕ(ν(x)) we obtain
ν ′(ϕ(x)) = ϕ(ν(x)) and �nally, since õ = o◦ = o+ ◦ ν = ν and õ′ = ν ′

the equation ϕ ◦ õ = õ′ ◦ ϕ. Hence by 3.2(1), ϕ is an isomorphism from
(P, P ◦) onto (P ′, P ′◦).

From 3.1 and 3.2 one obtains:

3.3. Let ϕ be an isomorphism between the permutation sets (P, Γ) and
(P ′,Γ′), let o ∈ (P, Γ)r (then ϕ(o) ∈ (P ′, Γ′)r) and let (P, +) resp. (P ′, +′)
be the loop derivation in o resp. ϕ(o). If ν ∈ Sym P (then also ν ′ ∈
SymP ′), let P ◦ := P+ ◦ ν and P ′◦ := P ′+ ◦ ν ′ then ϕ is an isomorphism
between (P, +) and (P ′,+′) and between the permutation sets (P, P ◦) and
(P ′, P ′◦).

3.4. Let (P, Γ)r 6= ∅, a ∈ (P, Γ)r, ψ ∈ Aut(P, Γ) and b := ψ(a) then:
(1) ∀x ∈ P ψ ◦ [a → x] ◦ ã−1 = [b → ψ(x)] ◦ b̃−1 ◦ ψ,
(2) ψ is an isomorphism between the left loops (P, +a) and (P, +b)

obtained by the loop derivations of (P,Γ) in the points a and b.
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3.5. Let (P, +) be a left loop with ν ∈ Sym P , (P, P ◦) with P ◦ = P+ ◦ν the
permutation derivation of (P, +) and let ϕ ∈ Sym P and f := ϕ◦ν◦ϕ−1(o).
Then for c ∈ P :

(1) ϕ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P ϕ ◦ a+ ◦ ϕ−1 ◦ f+ = (ϕ(a + ϕ−1(f)))+.
(2) If ϕ(o) = o then: "ϕ ∈ Aut(P, P ◦) ⇔ ϕ ∈ Aut(P, +)".
(3) ν ∈ Aut(P, P ◦) ⇔ ν ∈ Aut(P, +).
(4) c+ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P c+ ◦ a+ ◦ (c+)−1 ◦ (c− (−c))+ =

(c + (a− (−c)))+.
(5) c◦ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P c+ ◦ν ◦a+ ◦ν−1 ◦ (c+)−1 ◦ (c− (−c))+ =

(c− (a− c))+.

Proof. By de�nition, ϕ ∈ Aut(P, P ◦) if and only if ϕ◦a+ ◦ν ◦ϕ−1 ∈ P+ ◦ν
for each a ∈ P . For a = o we obtain that there has to be an f ∈ P with
ϕ ◦ ν ◦ ϕ−1 = f+ ◦ ν and so ϕ ◦ ν ◦ ϕ−1(o) = f+ ◦ ν(o) = f+(o) = f . Thus
ϕ ◦a+ ◦ ν ◦ϕ−1 = ϕ ◦a+ ◦ϕ−1 ◦ϕ ◦ ν ◦ϕ−1 = ϕ ◦a+ ◦ϕ−1 ◦ f+ ◦ ν ∈ P+ ◦ ν,
i.e., ϕ ◦ a+ ◦ ϕ−1 ◦ f+ ∈ P+. Since ϕ ◦ a+ ◦ ϕ−1 ◦ f+(o) = ϕ(a + ϕ−1(f))
we have proved (1). If ϕ(o) = o then f = o and condition (1) assumes the
form

ϕ ∈ Aut(P, P ◦) ⇔ ∀a ∈ P ϕ ◦ a+ ◦ ϕ−1 = (ϕ(a))+.

But this tells us that ϕ is an automorphism of the left loop (P, +). Since
ν(o) = (o+)−1(o) = id(o) = o, (3) is a consequence of (2).

Since f := c+ ◦ν ◦(c+)−1(o) = c−(−c) = c◦(−c) = c◦ ◦ν ◦(c◦)−1(o) and
so c+(a + (c+)−1(f)) = c + (a− (−c)) and c◦(a + (c◦)−1(f)) = c◦(a− c) =
c− (a− c), (4) and (5) are consequences of (1).

From 3.2 we obtain:

3.6. Let (P, +) be a left loop with ν ∈ SymP , then:
(1) P+ ⊆ Aut(P, P ◦) ⇔ ∀a, b ∈ P a+ ◦b+ = (a+(b−(−a)))+ ◦(−a)+.
(2) If P+ ⊆ Aut(P, P ◦) then (P, +) is a loop and for the structure group

∆ := 〈{δa,b | a, b ∈ P}〉 of the loop generated by the permutations
δa,b := ((a + b)+)−1 ◦ a+ ◦ b+ we have ∆ ≤ Aut(P, +) and therefore
Aut(P, P ◦) = P+ onQ Aut(P, +) is equal the quasidirect product of
the loop (P, +) with the automorphism group of the loop.

(3) P ◦ ⊆ Aut(P, P ◦) ⇔ ∀a, b ∈ P a+ ◦ (−b)+ = (a− (b−a))+ ◦ (−a)+.
(4) P ◦ ⊆ Aut(P, P ◦) ⇔ P+ ∪ {ν} ⊆ Aut(P, P ◦).

Proof. (1) We have: "P+ ⊆ Aut(P, P ◦) ⇔ the functional equation of
3.5(4) is valid for all c, a ∈ P". For a = −c we obtain (c+)−1◦(c−(−c))+ =
((−c)+)−1 and so 3.5(4) takes on the form (c+(a−(−c)))+◦(−c)+ = c+◦a+.
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(2) By 2.4, since ν ∈ SymP , (P, P ◦) is a permutation set with o ∈
(P, P ◦)r and so by P+(o) = P and P+ ⊆ Aut(P, P ◦), (P, P ◦) is a regular
permutation set. With (P, P ◦) also (P, P+ = P ◦ ◦ ν−1) is regular and so
by 2.2, (P, +) is a loop. By P+ ⊆ Aut(P, P ◦) we have ∆ ≤ Aut(P, P ◦) and
since δa,b(o) = ((a + b)+)−1 ◦ a+ ◦ b+(o) = ((a + b)+)−1(a + b) = o each
element δ ∈ ∆ �xes o and so by 3.5(2), ∆ ≤ Aut(P, +).

(3) Again, "P ◦ ⊆ Aut(P, P ◦) ⇔ the functional equation of 3.5(5) is
valid ∀c, a ∈ P". For c = o we obtain ν◦a+◦ν−1 = (−a)+ and so 3.5(5) takes
on the form c+◦(−a)+◦(c+)−1◦(c−(−c))+ = (c−(a−c))+. Now by a = c,
we obtain (−c)+◦(c+)−1◦(c−(−c))+ = id, i.e., (c−(−c))+ = c+◦((−c)+)−1

and �nally c+ ◦ (−a)+ = (c− (a− c))+ ◦ (−c)+.
(4) Clearly if P ◦ ⊆ Aut(P, P ◦), then ν = o◦ ∈ Aut(P, P ◦) and P+ =

P ◦ ◦ ν−1 ⊆ Aut(P, P ◦). If P+ ∪ {ν} ∈ Aut(P, P ◦) then P ◦ = P+ ◦ ν ⊆
Aut(P, P ◦).

3.7. For a loop (P, +) the following conditions are equivalent:
(1) (P, P ◦) is selfhomogeneous.
(2) ∀a, b ∈ P a+ ◦ (−b)+ ◦ ((−a)+)−1 = (a− (b− a))+.
(3) (P, P ◦) is an invariant regular involution set.
(4) (P, +) is a K-loop (= Bruck loop).

Proof. Let a, b ∈ P and c ∈ P the solution of x− a = b then [a → b]◦ = c◦

and so by 3.6(3) the conditions (1) and (2) are equivalent. From the equation
(2) we obtain a+ ◦ (−b)+ = (a− (b− a))+ ◦ ((−a)+) hence a + (−b + x) =
(a − (b − a)) + (−a + x) and so for x := −(−a), a + (−b − (−a)) =
a− (b− a), i.e., −b− (−a) = −(b− a), showing that ν is an automorphism
of (P, +). Now observing ν ∈ Aut(P, +) we obtain for x := − − (b − a):
a+(−b−−(b−a)) = (a−(b−a))+(−a−−(b−a)) = o hence a = b−(b−a) =
b+ ◦ ν ◦ b+ ◦ ν(a) = b◦ ◦ b◦(a), i.e., b◦ ∈ J in particular, o◦ = o+ ◦ ν = ν ∈ J .
Consequently P ◦ ⊆ J . Finally a◦ = a+ ◦ ν = (a◦)−1 = ν ◦ (a+)−1 hence
(a+)−1(x) = ν ◦ a+ ◦ ν(x) = −(a − x) = −a − −x = −a + x = (−a)+(x)
and ν ◦ a+ ◦ ν = (−a)+. Therefore the equation (2) assumes the form
a+ ◦ b+ ◦a+ = (a+(b+a))+ saying that (P, +) is a Bol loop hence together
with ν ∈ Aut(P, +), (P, +) is a Bruck loop and moreover, a◦ ◦ b◦ ◦ a◦ =
a+◦ν◦b+◦ν◦a+◦ν = a+◦(−b)+◦a+◦ν = (a+(−b+a))+◦ν ∈ P+◦ν = P ◦.
Consequently (P, P ◦) is an invariant regular involution set.

By [10], (3) and (4) are equivalent. Now let (P, +) be a Bruck loop.
Since (P, +) is also a Bol loop, we have a+ ◦ b+ ◦ a+ = (a + (b + a))+

and obtain by substituting a := −b, (−b)+ = (b+)−1 and so (− − b)+ =
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((−b)+)−1 = ((b+)−1)−1 = b+ hence − − b = b, i.e., ν2 = id. Then (since
ν ∈ Aut(P, +) ) a+◦(−b)+◦a+ = (a+(−b+a))+ = (a+(ν(b)+ν(ν(a))+ =
(a + ν(b + ν(a))+ = (a− (b− a))+ and this is equation (2).

3.8. For a left loop (P, +) with ν ∈ Sym P the following conditions are
equivalent:

(1) P+ ⊆ Aut(P, P ◦) and P+ = (P+)−1,
(2) (P, +) is a Bol loop.

Proof. (1) ⇒ (2) Let a, b ∈ P then there is a c ∈ P with (a+)−1 = c+

hence c = c+(o) = (a+)−1(o) implying a + c = a+(c) = o, i.e., c = −a
hence (a+)−1 = (−a)+ and so −(−a) = a. By 3.6(1), a+ ◦ b+ = (a + (b−
(−a)))+ ◦ (−a)+ and by observing the previous facts we obtain a+ ◦ b+ =
(a + (b + a))+ ◦ (a+)−1 or a+ ◦ b+ ◦ a+ = (a + (b + a))+ telling us that
(P, +) is a Bol loop.

(2) ⇒ (1) Since in a Bol loop, for each a ∈ P , (a+)−1 = (−a)+ and
−(−a) = a the characterizing functional equation a+◦b+◦a+ = (a+(b+a))+

of the Bol loop can be written in the form of the equation of 3.6(1) and
therefore the statements of (1) are veri�ed.

Remark 1. By 3.8, if (P, +) is a Bol loop then the permutation derivation
(P, P ◦) of (P, +) is a homogeneous Bol set (cf. 2.6) and so by 3.4(2),
if (P, +a) is the loop derivation of (P, P ◦) in an arbitrary point a ∈ P ,
then (P, +a) and (P, +) are isomorphic. This supplements 2.7(3) and more
precisely we have: The map (−a)+ is an isomorphism from the Bol loop
(P, +a) onto the Bol loop (P,+).

4. Involution sets
By [14] we have:

4.1. Let (P, +) be a left loop then the following statements are equivalent:
(1) ν ∈ SymP and P ◦ ⊆ J , i.e., (P, P ◦) is an involution set with

o ∈ (P, P ◦)r.
(2) (P, +) satis�es the condition (*) ∀ a, b ∈ P a− (a− b) = b.

4.2. Let (P, Γ) be a permutation set with Pr := (P, Γ)r 6= ∅, let o ∈ Pr be
�xed and let + := +o be the loop derivation of (P, Γ) in o. Then:

(1) Γ = Γ−1 ⇔ P̃r ⊆ J and õ ◦ (P+)−1 ◦ õ = P+.
(2) If there is a ν ′ ∈ J with ν ′ ◦ (P+)−1 ◦ ν ′ = P+ then Γ = Γ−1.
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(3) If (P, Γ) is an involution set then (P, +) satis�es the condition (*).
(4) If (P, Γ) is an invariant involution set then (P, +) is a K-loop.

Proof. (1) If a ∈ Pr then ã := [a → a] is the unique element of Γ �xing
a and also ã−1(a) = a. Therefore if Γ = Γ−1 then ã = ã−1, i.e., ã ∈ J , in
particular õ = o◦ ∈ J . By P+ = {x+ = [o → x]◦ (o◦)−1 = x◦ ◦ õ | x ∈ P} =
P ◦ ◦ õ = Γ ◦ õ hence Γ = P+ ◦ õ we have:

Γ = P+ ◦ õ = Γ−1 = õ ◦ (P+)−1 ⇔ õ ◦ (P+)−1 ◦ õ = P+.
(2) Let ν ′ ∈ J with ν ′ ◦ (P+)−1 ◦ ν ′ = P+ hence for each a ∈ P ∃b ∈ P

with ν ′ ◦ (a◦ ◦ (o◦)−1)−1 ◦ ν ′ = ν ′ ◦ o◦ ◦ (a◦)−1 ◦ ν ′ = b◦ ◦ o◦. For a = o
we obtain id = ν ′ ◦ ν ′ = b◦ ◦ o◦ hence b◦ = (o◦)−1. Consequently Γ−1 =
õ ◦ (P+)−1 = õ ◦ ν ′ ◦ P+ ◦ ν ′ = Γ = P+ ◦ õ−1 if and only if ν ′ = õ−1.

5. Defect functions
Let (P, Γ) be a permutation set with Pr 6= ∅ then the map

δ : Pr × P × Γ → Sym P,

(a, b, γ) 7→ δa;b,γ = [a → a] ◦ [γ(b) → a] ◦ γ ◦ [a → b]

is called the defect function of the permutation set (P, Γ) in the point a.
We have δa;b,γ(a) = a. If Pr = P we set

δ : P 3 −→ Sym P ; (a, b, c) 7→ δa;b,c := [a → a] ◦ [c → a] ◦ [b → c] ◦ [a → b].

Three points a, b, c ∈ P are called defect free if δa;b,c = id.
If (P, +) is a left loop then the map

δ : P × P → SymP ; (a, b) 7→ δa,b = ((a + b)+)−1 ◦ a+ ◦ b+

is called the defect function of the left loop (P, +) and a, b ∈ P are called
defect free if δa,b = id, i.e., if (a + b)+ = a+ ◦ b+. Here o is the �xed point
of δa,b. We recall that the de�nition implies:

5.1. If (P, +) is a K-loop then ∆ := 〈{δa,b | a, b ∈ P}〉 ≤ Aut (P, +).

6. Re�ection structures and point re�ection spaces
Let P be a non empty set. If there is a �xed point o ∈ P and a map

◦ : P → J ; x 7→ x◦ with x◦(o) = x for each x ∈ P
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then the tripel (P, ◦, o) is called re�ection structure (cf.[10]). If there is a
map

∼ : P → J ; x 7→ x̃ with Fix x̃ = {x} for each x ∈ P

satisfying the property
(M) for all a, b ∈ P ∃1m ∈ P with m̃(a) = b

then the pair (P,∼) is called point re�ection structure (cf. [6], [5]). A
re�ection structure (point re�ection structure) is invariant if for all a, b ∈ P
there exists c ∈ P with a◦ ◦ b◦ ◦ a◦ = c◦, ( ã ◦ b̃ ◦ ã = c̃ ). An invariant
re�ection structure (P, ◦, o) is a point re�ection structure if for each a ∈ P ,
|Fix a◦| = 1.

By the de�nitions and 2.5 follows:

6.1. Let (P, ◦, o) be a re�ection structure and Γ := P ◦ := {x◦ | x ∈ P}. If
(P, Γ) is regular, for each p ∈ P we denote by p̃ ∈ Γ the permutation with
p̃(p) = p. Let P̃ := {p̃ | p ∈ P}. Then:

(1) (P, P ◦) is an involution set, o a regular point hence o ∈ (P, P ◦)r

and the loop derivation of (P, P ◦) in the point o gives us a left loop
(P, +) satisfying the condition (*).

(2) (P, ◦, o) is an invariant re�ection structure ⇔ (P, P ◦) is an invar�
iant involution set with (P, P ◦)r 6= ∅ ⇔ (P, +) is a K-loop.

(3) (P, ◦, o) is an invariant point re�ection structure ⇔ (P, P ◦) is an
invariant involution set with (P, P ◦)r 6= ∅ and any two points
a, b ∈ P have exactly one midpoint m ∈ P , i.e., if c◦ ∈ P ◦ with
m ∈ Fix c◦ then c◦(a) = b ⇔ P̃ = P ◦ = Γ ⇔ (P, +) is a K-loop
uniquely 2-divisible.

(4) If the re�ection structure (P, ◦, o) (the point re�ection structure
(P,∼) ) is invariant then for all a, b ∈ P we have a◦ ◦ b◦ ◦ a◦ =
(a◦ ◦ b◦(a))◦, (ã ◦ b̃ ◦ ã = ˜̃a(b)).

Proof. All we have to show is that ν ∈ Sym P . Let x ∈ P then x+ = [o →
x] ◦ [o → o]−1 = x◦ ◦ (o◦)−1 = x◦ ◦ o◦ hence (x+)−1 = o◦ ◦ x◦ and so ν(x) =
−x = (x+)−1(o) = o◦ ◦ x◦(o) = o◦(x). Therefore ν = o◦ ∈ Sym P .

6.2. If (P, Γ) is an involution set with Pr = (P,Γ)r 6= ∅, o ∈ Pr �xed and
x◦ := [o → x] for each x ∈ P then (P, ◦, o) is a re�ection structure.

6.3. If (P, +) is a left loop satisfying (*) and x◦ := x+ ◦ ν for each x ∈ P
then (P, ◦, o) is a re�ection structure.
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De�nition 4. Let (P,∼) be a point re�ection structure and let ρ :=
{(a, b, c) ∈ P 3 | ã ◦ b̃ ◦ c̃ ∈ J} then (P,∼) is called point re�ection space if:

(R1) ∀a, b, c ∈ ρ : ã ◦ b̃ ◦ c̃ ∈ P̃ ,
(R2) ρ is a ternary equivalence relation, i.e.,

(a, b, c) ∈ ρ ⇒ (b, c, a), (b, a, c) ∈ ρ and
a 6= b ∧ (a, b, c), (a, b, d) ∈ ρ ⇒ (b, c, d) ∈ ρ.

Remark 2. If (P, L,≡, α) is an absolute geometry (cf. [10]) and if ∼ is the
map which associates to each point p ∈ P the re�ection in p then (P,∼) is
a point re�ection space.

From now on let (P,∼) be a point re�ection space, let P̃ := {p̃ | p ∈ P},
and let G := 〈P̃〉 be the group generated by the point re�ections p̃. Let the
point o ∈ P be �xed. From (R1) follows that (P, P̃ ) is an invariant regular
involution set. Therefore by 4.2(4) the loop derivation (P,+) of (P, P̃ ) in o
is a K-loop. We call (P,∼) singular if ρ = P 3 and ordinary otherwise. Any
two distinct points a, b ∈ P determine an equivalence class

a, b := {x ∈ P | (a, b, x) ∈ ρ}.

We have:

6.4. A point re�ection space (P,∼) is singular if one of the following equiv-
alent conditions is satis�ed:

(1) The set P of all points forms the only equivalence class of ρ,
(2) P̃ ◦ P̃ ◦ P̃ = P̃ ,
(3) P̃ ◦ P̃ is a commutative subgroup of index 2 in G,
(4) The K-loop (P, +) is a commutative group (isomorphic with P̃ ◦ P̃ ).

For the rest of this section let (P,∼) be an ordinary point re�ection
space. Then the set P together with the set L := {a, b | a, b ∈ P, a 6= b} of
all equivalence classes of ρ � called lines � forms an incidence space (P, L)
where the set L contains more than one line. A subset T ⊆ P is called
subspace of (P,∼) if for all a, b ∈ T with a 6= b we have a, b ⊆ T . Let T

be the set of all subspaces of (P,∼).

Remark 3. If (P, L,≡, α) is an ordinary absolute geometry then the set of
lines L coincides with the set of equivalence classes of the relation ρ.

6.5. An ordinary point re�ection space (P,∼) has the following properties:
(1) (P, L) in an incidence space.
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(2) If L ∈ L, then ∀a, b, c ∈ L ∃ d ∈ L with ã ◦ b̃ ◦ c̃ = d̃.
(3) If a, b ∈ P with a 6= b, then a, b = {x ∈ P | ã ◦ b̃ ◦ c̃ ∈ J}.
(4) For each T ∈ T, and for each t ∈ T it holds t̃(T ) = T .
(5) Let ∼T : T → Sym T ; t 7→ t̃|T . Then (T,∼T ) is a point re�ection

space and (T,∼T ) is singular if and only if T is a point or a line.
(6) 〈P̃ 〉 = G ≤ Aut(P,∼) = Aut(P, ρ) = Aut(P, L) = Aut(P, T)

and the automorphism group Aut(P, ∼) acts transitively on the
point set P .

Since an absolute space (P, L,≡, α) is also an ordered space (P, L, α)
and an ordered space is an exchange space (cf. [10] Theorem 1.5) there are
ordinary point re�ection spaces (P,∼) such that the corresponding incidence
space (P, L) is an exchange space. For these spaces we can state:

6.6. Let (P,∼) be an ordinary point re�ection space such that the correspon-
ding incidence space (P, L) is an exchange space. Then:

(1) (P, L) has a base B, two bases have the same cardinality and we
de�ne dim(P,∼) := |B| − 1 as dimension of (P,∼).

(2) If dim(P,∼) > 3 then (P,∼) is desarguesian.
(3) If dim(P,∼) > 3 let E := {T ∈ T | dimT = 2} be the set of all

planes, for each p ∈ P let L(p) := {L ∈ L | p ∈ L} and E(p) :=
{E ∈ E | p ∈ E}, then (L(p),E(p),⊂) is a projective space.

7. Nets, chain structures, webs and their properties
Let (P, G1, G2) be a 2-net, i.e., P is a non empty set and G1, G2 are subsets
of the powerset of P called generators such that:
(I1) ∀p ∈ P, ∀i ∈ {1, 2} ∃1 [p]i ∈ Gi with p ∈ [p]i,
(I2) ∀X ∈ G1, ∀Y ∈ G2 |X ∩ Y | = 1.

By (I1), (I2), if A,B ∈ Gi then A and B have the same cardinality and
there is a binary operation (cf. e.g. [4]):

¤ : P × P → P ; (x, y) 7→ xy := [x]1 ∩ [y]2

which has the properties:

7.1. Let a, b, c, d ∈ P and let {a, b}� := {ab, ba} and {a, b; c, d}� :=
{ab, ba; cd, dc}. Then:

(1) (ab)(cd) = ad,
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(2) ”ab = b ⇔ [a]1 = [b]1”, ”ab = a ⇔ [a]2 = [b]2” and aa = a,
(3) ({a, b}�)� = {ab, ba}� = {a, b},
(4) {a, b}� = {a, b} ⇔ ab = a or ab = b ⇔ |{a, b} ∪ {a, b}�| < 4,
(5) ({a, b; c, d}�)� = {a, b; c, d}.
The set {a, b} is called parallel (joinable) if {a, b}� = {a, b}, ({a, b}� 6=

{a, b}) and a subset A ⊆ P is called joinable if for all {a, b} ∈ (
A
2

)
we have

{a, b}� 6= {a, b}. Let
C := {C ∈ 2P | ∀X ∈ G1 ∪G2 |C ∩X| = 1}

be the set of all chains of the 2-net (P,G1, G2). If K ⊆ C then (P, G1,G2, K)
is called chain structure and (P, G1, G2,C) maximal chain structure. We
have:

C 6= ∅ ⇔ ∀A ∈ G1 ∀B ∈ G2 |A| = |B|.
If (P, G1, G2,K) satis�es the condition

(Ii) ∀{a1, ..., ai} ∈
(
P
i

)
which are joinable ∃1K ∈ K with {a1, ..., ai} ⊆ K

for i = 1, 2, 3 then (P, G1,G2, K) is called web, 2-structure, hyperbola struc-
ture, respectively. If (P, G1, G2,K) is a web, for each p ∈ P we denote
the chain K ∈ K which is uniquely determined by p ∈ K with [p]3, hence
[p]3 ∈ K and p ∈ [p]3.

For A,B ∈ C and p ∈ P let

pA := [p]1 ∩A, Ap := [p]2 ∩A and ÃB : P → P ; x 7→ (Bx)(xA).

Moreover we consider the 1- and 2-perspectivities:

[A 1→ B] : A → B; x 7→ xB, [A 2→ B] : A → B; x 7→ Bx.

We note:

7.2. Let A,B, C ∈ C then:
(1) ÃB ∈ SymP with ÃB ∈ Aut(P, G1 ∪G2) and ÃB(G1) = G2,

B̃A = (ÃB)−1, F ix ÃB = A ∩B,
(2) ÃB(C) ∈ C, ÃB(A) = B, ÃB(B) = A,
(3) Ã := ÃA is an involution with Fix Ã = A, called re�ection in A,
(4) ÃB = C̃D ⇔ (A,B) = (C,D),
(5) Ã, B|A = [A 2→ B], Ã, B|B = [B 1→ A],

(6) Ã, B ◦ C̃ ◦ B̃, A = ˜̃
A,B(C), in particular Ã ◦ C̃ ◦ Ã = ˜̃

A(C).
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By 7.2(2) there is the following ternary operation:

τ : C× C× C → C; (A,B, C) 7→ τ(A,B, C) := ÃC(B).

Two chains A,B ∈ C are called orthogonal, denoted by A ⊥ B, if A 6= B
and Ã(B) = B. Then A ⊥ B implies B ⊥ A. For a subset K ⊆ C we
denote by K⊥ := {C ∈ C | ∀K ∈ K C̃(K) = K} the orthogonal complement
of the chain set K.
De�nition 5. Let (P, G1,G2, K) be a chain structure, T ∈ C and X ∈
G1∪G2. (P, G1, G2,K) is called covering if

⋃
K = P . T is called transversal

of (P, G1,G2, K) if for each K ∈ K

T ∩K 6= ∅ and for each t ∈ T ∃1K ∈ K such that t ∈ K.

T is called orthogonal transversal of (P, G1, G2, K) if moreover for each
K ∈ K it holds T ⊥ K. X is called transversal (quasi-transversal) of
(P, G1, G2, K) if the map

K → X; K 7→ K ∩X

is a bijection (injection).

7.3. Let E ∈ C be �xed and for A,B ∈ C let A ·B := ÃB(E). Then (C, ·) is
a group isomorphic to Sym E with the neutral element E and we have the
representations:

τ(A,B, C) = ÃC(B) = A ·B−1 · C and Ã(B) = A ·B−1 ·A.

De�nition 6. A subset S ⊆ C is called symmetric, if for all A,B ∈ S it
holds τ(A,B, A) = Ã(B) ∈ S, and double symmetric, if for all A,B,C ∈ S

we have τ(A,B, C) = Ã, C(B) ∈ S.
Clearly each double symmetric subset S is also symmetric, and the set

of all symmetric and double symmetric subsets, respectively, is closed with
respect to intersections. This allows us to de�ne the two closure operations:
if A is an arbitrary subset of C and if CS and CSS , respectively, denotes the
set of all symmetric and double symmetric subsets of C, let

A∼ :=
⋂
{S ⊆ CS | A ⊆ S} and A∼∼ :=

⋂
{S ⊆ CSS | A ⊆ S} ,

respectively, be the smallest symmetric and double symmetric subset of C

containing A.
Let Ã := {Ã | A ∈ A} and

∼∼
A := {Ã, B | A,B ∈ A}. Then:
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7.4. Let A ⊆ C and M(A) := {ÃB, ÃB ◦ C̃ | A,B,C ∈ A}. Then:
(1) A = A∼ ⇔ Ã is normal in Ã, (i.e., ∀ α, β ∈ Ã α ◦ β ◦ α ∈ Ã),
(2) A = A∼∼ ⇔ Ã is normal in

∼∼
A ,

(i.e., ∀ α ∈ Ã ∀ β ∈∼∼A β ◦ α ◦ β−1 ∈ Ã),
(3) if an element E ∈ A is �xed and the multiplication de�ned according

to 7.3, then A = A∼∼, i.e., A is double symmetric ⇔ A ≤ C,
(4) M(A) ≤ Sym P ⇔ A ≤ C.

Remark 4. For a chain structure (P, G1, G2, K) the General Rectangle Ax-
iom
(R) ∀A,B, C ∈ K : {[[a]1 ∩B]2 ∩ [[a]2 ∩ C]1 | a ∈ A} ∈ K,
formulated in [13] p.89, claims exactly that the set K of chains is double
symmetric, i.e., for all A, B,C ∈ K it holds A · B−1 · C ∈ K. Therefore
if a chain structure (P, G1,G2, K) satis�es the General Rectangle Axiom
(R) then K is symmetric. For a web (P, G1, G2, K) the axiom (R) is called
Reidemeister Condition.

Remark 5. Another axiom formulated by W.Benz [3] for hyperbola struc-
tures (P, G1, G2, K) and called Symmetry Axiom is the following:
(S) ∀K, L ∈ K : |L̃(K) ∩K| > 2 ⇒ L̃(K) = K.
By [2] and [9] we have the result: For a hyperbola structure (P, G1,G2, K)
the Symmetry Axiom (S) implies the Rectangle Axiom (R) and so for a hy-
perbola structure (P, G1,G2, K) satisfying the Symmetry Axiom (S) the set
of chains K is symmetric. But there are hyperbola structures (P, G1,G2, K)
where K is even double symmetric and the Symmetry Axiom (S) is violated
(cf. [13] p. 90 �).

7.5. Let A,B, C, · · · ∈ C, E ∈ C �xed and let ” · ” be de�ned according to
7.3. Then:

(1) Fix ÃB = A ∩B, Fix (ÃB ◦ C̃) = (B ∩ C)¤(A ∩ C),
(2) ÃB ◦ C̃D ◦ F̃G = ˜(AD−1F )(GC−1B),
(3) ÃB ◦ C̃D = ˜(AD−1U)(UC−1B) ◦ Ũ ,
(4) Ã ◦ B̃ ◦ Ã = ÃB−1A = ˜̃

A(B),
(5) Ã ◦ B̃C ◦ Ã = ˜(AC−1A)(AB−1A) = ˜

Ã(C), Ã(B),
(6) ÃB ◦ Ẽ ◦ C̃D ◦ Ẽ = ˜(AC)(DB) ◦ Ẽ.
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8. Symmetric chain structures as permutation sets
Let (P, G1, G2,C) be a maximal chain structure and let S ⊆ C be a sym-
metric subset of chains, hence for all S, T ∈ S, S̃(T ) ∈ S. Therefore for
each S ∈ S the map

S̃ : S → S; X 7→ S̃(X)

is an involution of SymS and so (S, S̃) with S̃ := {S̃ | S ∈ S} is an
involution set. By 7.2(6), S̃ ◦ T̃ ◦ S̃ = ˜̃

S(T ), hence (S, S̃) is an invariant
involution set. From 2.3 and 4.2 we obtain:

8.1. Let (P, G1, G2,S) be a symmetric chain structure such that (S, S̃)r 6=
∅ and let E ∈ (S, S̃)r then:

(1) (S, S̃) is a regular invariant involution set,
(2) ∀A,B ∈ S ∃1C ∈ S C̃(A) = B (i.e., [A → B] = C̃),
(3) the loop derivation

+ : S×S → S; (A,B) 7→ A + B := [E → A] ◦ Ẽ(B)
of (S, S̃) in E produces a K-loop (S, +).

8.2. Let (P, G1, G2, S) be a web with S⊥ 6= ∅, let T ∈ S⊥ and for each
S ∈ S let S̃|T be the restriction of S̃ onto T then:

(1) (T, S̃|T ) with S̃|T := {S̃|T ) | S ∈ S} is a regular involution set and
for each S ∈ S we have S = {x¤S̃|T (x) | x ∈ T}.

(2) The following statements are equivalent:
(i) S̃ is symmetric,
(ii) (S, S̃) is a regular invariant involution set.

Proof. (1) Let a, b ∈ T and C := [ab]3 be the chain C ∈ S of our web
containing the point ab then C ⊥ T and this implies C̃(T ) = T and T̃ (ab) =
ba ∈ T̃ (C) = C hence C̃(a) = b and so [a ↔ b] := C̃|T showing that (T, S̃|T )
is a regular involution set.

(2) is a consequence of (1) and 8.1.

9. Immersions of permutation sets in chain structures
We consider �rstly the permutation set (E,Sym E) where E is a not empty
set. To (E, Sym E) there corresponds the following maximal chain structure
(P, G1, G2, C) (cf. e.g. [1]) with:

P := E ×E, G1 := {E × x | x ∈ E}, G2 := {x×E | x ∈ E}
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and C the set of all chains of the net (P, G1, G2). If we identify E with the
subset {(x, x) | x ∈ E} of P then E ∈ C and in that way we see that C is
not empty. Let

κE : Sym E → C; σ 7→ κE(σ) := {(x, σ(x)) | x ∈ E}.

Then for each σ ∈ Sym E, κE(σ) is a chain of C, the graph of σ, and the
map κE is a bijection between Sym E and C. The inverse map of κE is
given by

λE : C → Sym E; C 7→ C̃E ◦ C̃E|E .

Moreover if C is turned into a group (C, ·) according to 7.3 then κE is an
isomorphism from the symmetric group (Sym E, ◦) onto the group (C, ·).
Now let (E, Γ) be an arbitrary permutation set. Then K := κE(Γ) is a subset
of C and (P,G1, G2,K) a chain structure called the envelope of (E, Γ). We
write Ev(E, Γ) := (P, G1, G2,K). Between a permutation set (E,Γ) and her
envelope Ev(E, Γ) := (P, G1, G2,K) there are the following connections:

9.1. Let (E, Γ) be a permutation set and (P, G1,G2, K) := Ev(E,Γ) her
envelope then:

(1) Γ ≤ Sym E ⇔ K ≤ C,
(2) (E,Γ) is a regular permutation set ⇔ (P, G1,G2, K) is a web,
(3) (E,Γ) is a regular permutation group ⇔ (P, G1, G2,K) is a web

with K ≤ C, i.e., a web satisfying the Reidemeister Condition;
in this case we call (P, G1, G2, K) a webgroup,

(4) (E,Γ) is a sharply 2-transitive permutation set ⇔ (P, G1,G2, K) is
a 2-structure,

(5) (E,Γ) is a sharply 2-transitive permutation group ⇔ (P, G1,G2, K)
is a 2-structure with K ≤ C, i.e., a 2-structure satisfying the rect�
angle axiom (R) (cf. [7]); in this case we call (P,G1, G2, K) a 2-
group,

(6) (E,Γ) is a sharply 3-transitive permutation set ⇔ (P, G1,G2, K) is
a hyperbola structure,

(7) (E,Γ) is a sharply 3-transitive permutation group ⇔ (P, G1,G2, K)
is a hyperbola structure with K ≤ C, i.e., a hyperbola structure
satisfying the rectangle axiom; in this case we call (P,G1, G2, K) a
hyperbola group.

From now on we consider only permutation sets (E, Γ) with (E, Γ)r 6= ∅.



Loops related to geometric structures 69

9.2. Let (P, G1,G2, K) be a chain structure with a transversal X ∈ G1 of
(P, G1, G2, K), let o ∈ X be �xed and let E ∈ K with o ∈ E. Then for
each a ∈ E, o¤a is an element of X and so there is exactly one A ∈ K

with o¤a ∈ A. Therefore if we set a+ := λE(A) and E+ := {a+ | a ∈ E}
then (E,E+) becomes a permutation set with o ∈ (E, E+)r, and (E, +) with
a + b := a+(b) becomes a left loop. Moreover we have κE(a+) = A hence
K = κE(E+) and the following three propositions are equivalent:

(i) (P, G1, G2, K) is a web,
(ii) ∀X ∈ G1 X is a transversal of (P, G1, G2, K),
(iii) ∀X ∈ G2 X is a transversal of (P, G1, G2,K).

9.3. Let (E,+) be a left loop, X := o¤E, K := κE(E+) and for a, b ∈ E,
A := κE(a+), B := κE(b+) then κE(a+ ◦ b+ ◦ a+) = A · B · A = Ã(B−1)
and we have:

(1) X ∈ G1 is a transversal of (P, G1, G2,K),
(2) a+ ◦ b+ ◦ a+ ∈ E+ ⇔ A ·B ·A = Ã(B−1) ∈ K,
(3) (E,+) is a Bol loop ⇔ K is symmetric.

From 9.3 we obtain the theorems:

Theorem 9.4. Let (E, +) be a Bol loop and let K := κE(E+) then K is
symmetric hence (by section 8) (K, K̃) is an invariant involution set and the
following statements are equivalent:

(i) (K, K̃) is regular,
(ii) for all a, b ∈ E the equation b = x + (−a + x) has exactly one

solution x ∈ E,
(iii) (E, +) is uniquely 2-divisible, i.e., ∀a ∈ E ∃1x ∈ E with x+x = a,
(iv) ∀A ∈ K ∃1A

′ ∈ K A′ ·A′ = A (this implies: if A + B := A′ ·B ·A′
then (K,+) is a K-loop),

(v) K⊥ 6= ∅.

Proof. Let A,B ∈ K and a+ := λE(A), b+ := λE(B). If there is a C ∈ K

such that B = C̃(A) = C · A−1 · C and if c+ := λE(C) then b+ = c+ ◦
(−a)+ ◦ c+ hence b = c + (−a + c). If c ∈ E is a solution of the equation
b = x + (−a + x) and C := κE(C+) then C̃(A) = B. This shows the
equivalence of (i) and (ii) and if we set a := o in (ii) we see that (ii)
implies (iii). Finally we assume (iii). For each a ∈ E let a′ ∈ E such
that a′ + a′ = a then if A := κE(a+) and A′ := κE(a′+) we have Ã′(E) =
A′ ·E ·A′ = A′ ·A′ = κE(a′+) ·κE(a′+) = κE(a′+◦a′+) = κE(a+) = A. This
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shows (iv) and E ∈ (K, K̃)r and so by 2.3(4), (K, K̃) is a regular invariant
involution set, i.e., (iv) implies (i).

The equivalence of (i) and (v) is a consequence of 8.1.

We set A+B := Ã′ ◦ Ẽ(B) = Ã′(B−1) = A′ ·B ·A′ = κE(a′+) ·κE(b+) ·
κE(a′+) = κE(a′+ ◦ b+ ◦ a′+) = κE(a′ + (b + a′))+ ∈ κE(E+) = K and so
by 8.1(3), (K,+) is a K-loop and moreover we have the result of P. T. Nagy
and K. Strambach [23].

Theorem 9.5. Let (E, +) be a Bol loop uniquely 2-divisible and for a ∈ E
let a′ ∈ E such that a′ + a′ = a, then (E,⊕) with a⊕ b := a′ + (b + a′) is
a K-loop.

10. Loops derived from point re�ection spaces
In this section let (P,∼) be a point re�ection space, let a point o ∈ P be
�xed and let (P, +) be the loop derivation of (P,∼) in o. If (P,∼) is singular
then by 6.4 the loop (P, +) is a commutative group. Therefore we assume
that (P,∼) is ordinary. Then by 9.4, (P, +) is a proper K-loop uniquely
2-divisible. For p ∈ P let p′ ∈ P such that p′ + p′ = p. We recall that the
operation "+" is given by a + b := ã′ ◦ õ(b) and that the pair (P, L), where
L denotes the set of equivalence classes of the relation ρ, is an incidence
space (cf. section 6).

We show:

Theorem 10.1. Let F := L(o) := {L ∈ L | o ∈ L} be the set of all
equivalence classes containing o and let a, b ∈ P . Then:

(1) if a+ ◦ b+ = b+ ◦ a+ then a+ ◦ b+ ∈ P+, more precisely, a+ ◦ b+ =
(a + b)+,

(2) For each F ∈ F, F is a commutative subgroup of the loop (P, +),
and if a ∈ F \ {o} then F = {x ∈ P | a+ ◦ x+ = x+ ◦ a+},

(3) L = {a + F | a ∈ P, F ∈ F},
(4) the collineation group Aut(P, L) contains P+,
(5) the set F is a �bration of the K-loop (P,+) consisting of commuta�

tive subgroups of the loop (P, +), i.e., for all A,B ∈ F and for each
a ∈ P :
(F.1) |A| > 2,
(F.2)

⋃
F = P ,

(F.3) if A 6= B then A ∩B = {o}.
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Proof. (1) By p+ = p̃′ ◦ õ, the equation a+ ◦ b+ = ã′ ◦ õ ◦ b̃′ ◦ õ = b+ ◦ a+ =
b̃′ ◦ õ ◦ ã′ ◦ õ implies ã′ ◦ õ ◦ b̃′ = b̃′ ◦ õ ◦ ã′, i.e., ã′ ◦ õ ◦ b̃′ ∈ J and so by (R1),
there is a c ∈ P such that ã′ ◦ õ ◦ b̃′ = c̃. Therefore a+ ◦ b+ = c̃ ◦ õ ∈ P+

and since a+ ◦ b+(o) = a+(b) = a + b this implies a+ ◦ b+ = (a + b)+.
(2) For p ∈ P+ the equation p = p̃′(o) implies by 6.1(4), p̃ = ˜̃

p′(o) =
p̃′ ◦ õ ◦ p̃′ and p′ 6= o hence õ ◦ p̃′ ◦ p̃ = p̃′ ∈ J and õ ◦ p̃ ◦ p̃′ = õ ◦ p̃′ ◦ õ ∈ J
and so by 6.5(3), p′ ∈ o, p and p ∈ o, p′ hence o, p = o, p′. Therefore:
x ∈ F = o, a = o, a′ ⇔ x′ ∈ F = o, a′ ⇔ x̃′ ◦ õ ◦ ã′ = ã′ ◦ õ ◦ x̃′ ⇔ x+ ◦ a+ =
x̃′ ◦ õ ◦ ã′ ◦ õ = ã′ ◦ õ ◦ x̃′ ◦ õ = a+ ◦ x+ ⇒ x + a = x+(a) = x+ ◦ a+(o) =
a+ ◦ x+(o) = a + x.

(3), (4) If p ∈ P then by 6.5(6) p+ = p̃′ ◦ õ ∈ Aut(P, L), and therefore
if L ∈ L, p ∈ L then F := (p+)−1(L) ∈ L and o ∈ F , i.e., F ∈ F and
a + F = a+(F ) = L.

11. Loops with �brations
In 1987 Elena Zizioli introduced for loops the notion of an incidence �bration
(cf. [27], [16]) in the sense of the following de�nition:
Given a loop (P, +) and a set F ⊆ 2P , F is called a �bration of (P, +) if:

(F1) ∀X ∈ F |X| > 2,
(F2)

⋃
F = P ,

(F3) ∀A,B ∈ F A 6= B A ∩B = {o}.
If furthermore the following conditions

(F4) ∀a ∈ P ∀X ∈ F o ∈ a + X =⇒ a + X ∈ F,
(F5) ∀X ∈ F ∀δ ∈ ∆ δ(X) ∈ F,

are valid then F is called an incidence �bration.
Remark 6. If (P, +, F) is a �bered loop then to each a ∈ P ∗ there is exactly
one �ber A ∈ F with a ∈ A which we denote by [a]. Then (F4) and (F5)
can be expressed in the form:

(F4)′ ∀a ∈ P ∗ a + [−a] = [a],
(F5)′ ∀a ∈ P ∗ ∀δ ∈ ∆ δ([a]) = [δ(a)].
By [27] we have:

11.1. If F is an incidence �bration of a loop (P, +) let L := {a + X | a ∈
P, X ∈ F}. Then (P, L, +) is an incidence loop, i.e., (P, L) is an incidence
space, (P, +) is a loop and for each a ∈ P the map a+ is a collineation of
(P, L).
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Remark 7. The �bration F corresponding to an ordinary point re�ection
space (P,∼) according to 9.1 is an incidence �bration of the loop (P, +) since
the �beres are subgroups of (P, +) and the maps a+ collineations of (P, L).
Moreover if A ∈ F and a ∈ A \ {o} then A = {x ∈ P | x+ ◦ a+ = a+ ◦ x+}
is the centralizer of the element a in (P.+).

Now we ask, when do the centralizers of an arbitrary loop form a �bra-
tion or an incidence �bration, respectively? To answer this, we consider the
following two exchange conditions:

(Z1) For all a, b ∈ P ∗ if b ∈ [a] then [a] ⊆ [b].
(Z2) For all a, b ∈ P ∗ if a+ ◦ b+ = b+ ◦ a+ then a+ ◦ b+ ∈ P+.

11.2. Let (P, +) be a loop, for any a ∈ P ∗ let [a] := {x ∈ P | a+ ◦ x+ =
x+ ◦ a+} be the centralizer of a and let Z := {[a] | a ∈ P ∗}. Then:

(1) Z is a �bration of (P, +) if and only if the exchange condition (Z1)
is veri�ed,

(2) Z is an incidence �bration if and only if (Z1) and the condition:
"∀a ∈ P ∗ ∀δ ∈ ∆ : a + [−a] = [a] and δ([a]) = [δ(a)]" are valid,

(3) if Z is a �bration then on each �ber [a] the addition ” + ” is com�
mutative,

(4) if (P,+) satis�es (Z1) and (Z2) then each �ber [a] is a commutative
subsemigroup of (P, +) and [a]+ := {x+ | x ∈ [a]} is a commutative
subsemigroup of Sym P ,

(5) if ∆ ≤ Aut(P, +) (i.e., (P, +) is an Al-loop, cf. [17] p. 35) then Z

satis�es (F5).

Proof. (3), (4) Let x, y ∈ [a]\{o} . Then x+y = x+◦y+(o) = y+◦x+(o) =
y + x. If (Z2) is valid then (x + y)+(o) = x + y = x+ ◦ y+(o) implies
(x + y)+ = x+ ◦ y+ and so a+ ◦ (x + y)+ = a+ ◦ x+ ◦ y+ = x+ ◦ a+ ◦ y+ =
x+ ◦ y+ ◦ a+ = (x + y)+ ◦ a+, i.e., x + y ∈ [a] and moreover (x + y) + z =
(x + y)+(z) = x+ ◦ y+(z) = x + (y + z) showing that [a] and [a]+ are
semigroups.

(5) Clearly if a ∈ P ∗ and α ∈ Aut(P, +) then α([a]) = [α(a)].

If Z is an incidence �bration we say that the loop (P, +) has a c(entralizer)-
�bration. In order to obtain more informations we claim from now on that
our loop (P, +) satis�es the left inverse property

∀a ∈ P a+ ◦ (−a)+ = id.
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11.3. Let (P, +) be a loop satisfying the left inverse property and (Z1) then:
(1) ν ∈ Aut(P, Z) ∩ J , more precisely ν is the identity on Z,
(2) (F4)′ ⇔ ∀a ∈ P ∗ [a] + [a] ⊆ [a],
(3) if for each a ∈ P ∗ [a]+[a] ⊆ [a] then [a] is a commutative subgroup

of the loop (P,+),
(4) (P, +) has a c-�bration if and only if (Z1) and the condition:

"∀a ∈ P ∗ ∀δ ∈ ∆ [a] + [a] = [a] and δ([a]) = [δ(a)]" are valid.
Proof. Let a ∈ P ∗ then (−a)+ = (a+)−1 and so a+ ◦ (−a)+ = (−a)+ ◦ a+,
hence by (Z1), [a] = [−a], i.e., ν ∈ Aut(P, Z) ∩ J and a + [−a] = a + [a] ⊆
[a] + [a] ⊆ [a]. If x ∈ [a] then y := (a+)−1(x) = (−a)+(x) = −a + x ∈
[a] + [a] ⊆ [a] hence x ∈ a+([a]) = a + [a]. Together a + [−a] = [a] and this
shows the equivalence in (2).

By 10.1, the loop (P, +) derived from an ordinary point re�ection space
is a K-loop satisfying the exchange conditions (Z1) and (Z2). Since a K-
loop is an Al-loop with left inverse property, (P, +) has a c-�bration.
11.4. Let (P, +) be a loop with left inverse property and where Z is a c-
�bration, let (P, +,L) (with L := {a+[b] | a ∈ P, b ∈ P ∗}) the corresponding
incidence loop (according 11.1) and let a ∈ P ∗ then:

(1) the restriction of ν onto [a] is an automorphism of the commutative
group ([a], +),

(2) for each p ∈ P ˜̃p ∈ J and ˜̃p �xes the bundle p + Z linewise,
(3) if ν ∈ Aut(P, +) then P ◦ = P+ ◦ ν ⊆ Aut(P, L) ∩ J and for p ∈ P

ν ◦ p+ ◦ ν = (ν(p))+ = (−p)+, ˜̃p = p+ ◦ p+ ◦ ν = p+ ◦ p◦, hence
˜̃
P ⊆ Aut(P, L) ∩ J .

We summarize:
Theorem 11.5. Let (P,∼) be an ordinary point re�ection space (cf. De�-
nition 4), let o ∈ P be �xed and let (P, +) the loop derivation of (P,∼) in
o. Then (P, +) is a proper K-loop uniquely 2-divisible, satisfying (Z1) and
(Z2) and Z is an incidence �bration.
Theorem 11.6. Let (P, +) be a proper K-loop uniquely 2-divisible satisfying
(Z1) and (Z2) and let

∼: P → J ; p 7→ p̃ := p+ ◦ ν ◦ (−p)+.

Then:
(1) Z is an incidence �bration,
(2) (P,∼) is an ordinary point re�ection space.
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Proof. (1) A K-loop is an Al-loop with left inverse property. Therefore by
11.2 and 11.3, (Z1) and (Z2) enforce that Z is an incidence �bration.

(2) Since in an uniquely 2-divisible K-loop, ν is an involutory auto-
morphism of (P, +) with Fix ν = {o} and (−p)+ = (p+)−1, the map p̃ is
an involution �xing exactly the point p and p̃ = (p + p)+ ◦ ν = (p + p)◦

showing P ◦ = P+ ◦ ν = P̃ := {p̃ | p ∈ P}. By 3.7 and the 2-divisibility,
(P, P ◦) = (P, P̃ ) is a selfhomogeneous invariant regular involution set sat-
isfying (M). Hence (P,∼) is a point re�ection structure and p̃ = p◦ ◦ ν ◦ p◦.
If (a, b, c) ∈ P 3 are given and a′ := b◦ ◦ ã ◦ b◦(o) = b◦ ◦ ã(b), c′ :=
b◦ ◦ c̃ ◦ b◦(o) = b◦ ◦ c̃(b) then a′◦ = b◦ ◦ ã ◦ b◦ and c′◦ := b◦ ◦ c̃ ◦ b◦ and we
have: (a, b, c) ∈ ρ ⇔ ã ◦ b̃ ◦ c̃ ∈ J ⇔ a′◦ ◦ ν ◦ c′◦ ∈ J ⇔ a′+ ◦ c′+ = c′+ ◦ a′+

implying by (Z2), d◦ ◦ ν = d+ = a′+ ◦ c′+ = a′◦ ◦ ν ◦ c′◦ ◦ ν for d := a′ + b′

hence d◦ = b◦ ◦ ã ◦ b◦ ◦ ν ◦ b◦ ◦ c̃ ◦ b◦ ⇔ ã ◦ b̃ ◦ c̃ = b◦ ◦ d◦ ◦ b◦ ∈ P ◦ = P̃ .
Thus (R1) is valid.

In order to show (R2) we use the same notation as in the proof of (R1).
By the invariance of P ◦ and (R1), the relation ρ is symmetric. Therefore
let a 6= b and (a, b, c), (a, b, d) ∈ ρ hence a′+ ◦c′+ = c′+ ◦a′+ and a′+ ◦d′+ =
d′+ ◦a′+, i.e., c′, d′ ∈ [a′] and so d′+ ◦c′+ = c′+ ◦d′+ implying again by (Z2)
for e := c′+d′, c̃◦ b̃◦ d̃ = b◦◦e◦◦b◦ ∈ P ◦ = P̃ . Consequently (c, b, d) ∈ ρ and
so also (b, c, d) ∈ ρ. Since (P, +) is not commutative, ρ 6= R3 and therefore
(P,∼) is an ordinary point re�ection space.
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Computing with small quasigroups and loops

Gábor P. Nagy and Petr Vojt¥chovský

Abstract

This is a companion to our lectures GAP and loops, to be delivered at the Workshops
Loops 2007, Prague, Czech Republic. In the lectures we introduce the GAP [6] package
LOOPS [15], describe its capabilities, and explain in detail how to use it. In this paper
we �rst outline the philosophy behind the package and its main features, and then we
focus on three particular computational problems: construction of loop isomorphisms,
classi�cation of small Frattini Moufang loops of order 64, and the search for loops of
nilpotency class higher than two with an abelian inner mapping group.

In particular, this is not a user's manual for LOOPS, which can be downloaded from
the distribution website of LOOPS.

1. Main features
On the one hand, since there is no useful representation theory for quasi-
groups and loops, we have decided to represent quasigroups and loops in
LOOPS by their Cayley tables, thus e�ectively limiting the scope of the
package to quasigroups of order at most 500 or so. (A future project is to
implement other loop representations, notably by connected transversals in
groups.)

On the other hand, to take advantage of the powerful methods for groups
already present in GAP, most calculations in LOOPS are delegated to the
permutation groups associated with quasigroups, rather than performed on
the level of Cayley tables. For instance, to decide if a loop is simple, we
check whether its multiplication group is a primitive permutation group.
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Keywords: loop, quasigroup, GAP, computation in nonassociative algebra, loop iso-
morphism, Latin square, Csörg® loop, small Frattini Moufang loop, LOOPS package,
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To avoid repeated calculations, we store most information obtained for a
given quasigroup as its attribute. In GAP, there is no syntactical di�erence
between calling a method or retrieving an attribute. For instance, when Q
is a quasigroup then Center(Q) calculates and stores the center Z(Q) of Q
when called for the �rst time, while it retrieves the stored attribute Z(Q)
when called anytime later.

Moreover, GAP uses simple deduction process��lters�to obtain addi-
tional information about an object without an explicit user's request. For
instance, if LOOPS knows that Q is a left Bol loop that is also commutative,
the built-in �lter (IsMoufangLoop, IsLeftBolLoop and IsCommutative)
automatically deduces that Q is a Moufang loop and stores this information
for Q. This is a powerful tool, since many �lters built into LOOPS are deep
theorems.

1.1. Creating quasigroups and loops
A (quasigroup) Cayley table is an n × n Latin square with integral entries
x1 < · · · < xn. A canonical Cayley table is a Cayley table with x1 = 1, . . . ,
xn = n.

When T is a Cayley table, QuasigroupByCayleyTable(T) creates a
quasigroup whose Cayley table is the canonical Cayley table obtained from
T by replacing xi with i. Should T be normalized�the �rst row and �rst
column reads x1, . . . , xn�then LoopByCayleyTable(T) returns the corre-
sponding loop. The Cayley table of a quasigroup Q can be retrieved by
CayleyTable(Q).

Throughout this paper, we illustrate the methods of LOOPS by ex-
amples, often without any comments for self-explanatory commands. The
syntax is that of GAP.

gap> Q := QuasigroupByCayleyTable([[2,1],[1,2]]); Elements(Q);
<quasigroup of order 2>
[ q1, q2 ]
gap> L := LoopByCayleyTable([[3,5],[5,3]]); Elements(L); L.2;
<loop of order 2>
[ l1, l2 ]
l2
gap> CayleyTable(Q);
[ [ 2, 1 ], [ 1, 2 ] ]
gap> Print(L);
<loop with multiplication table
[ [ 1, 2 ],
[ 2, 1 ] ]

>
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It is also possible to create quasigroups and loops by reading Cayley ta-
bles from �les (with very relaxed conditions on the form of the Cayley table),
by converting groups to quasigroups, by taking subquasigroups, subloops,
factor loops, direct products, etc. See the manual for details.

1.2. Conversions
Even if a quasigroup happens to have a neutral element, it is not considered
a loop in LOOPS unless it is declared as a loop. Similarly, a group of GAP
is not considered a loop. We therefore provide conversions between these
types of algebras:

gap> G := Group((1,2,3),(1,2)); AsLoop(G);
Group([ (1,2,3), (1,2) ])
<loop of order 6>
gap> Q := QuasigroupByCayleyTable([[2,1],[1,2]]); AsLoop(Q);
<quasigroup of order 2>
<loop of order 2>

The neutral element of any loop L in LOOPS is always the �rst element
of L, i.e., One(L) = L.1.

Given a quasigroup Q and elements f , g ∈ Q, the principal loop isotope
(Q, f, g) of Q is obtained from Q via the isotopism (R−1

g , L−1
f , id), cf. [17,

p. 60]. Then (Q, f, g) is a loop with neutral element fg.
The conversion AsLoop(Q) works as follows, starting with a quasigroup

Q:

(i) When Q does not have a neutral element, it is �rst replaced by the
principal loop isotope (Q,Q.1, Q.1), thus turning Q into a loop with
neutral element (Q.1)(Q.1).

(ii) When Q has a neutral element k, it is replaced by its isomorphic copy
via the transposition (1, k).

1.3. Subquasigroups and subloops
A new quasigroup Q2 is frequently obtained as a subquasigroup of an ex-
isting quasigroup Q1. Since all information about Q2 is already contained
in the Cayley table of Q1, and since it is often desirable to have access
to the embedding of Q2 into Q1, we provide a mechanism in LOOPS for
maintaining the inclusion of Q2 and Q1.
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When Q1 is a quasigroup and S is a subset of Q1, Subquasigroup(Q1,
S) returns the subquasigroup Q2 of Q1 generated by S. At the same time,
the attribute Parent(Q2) is set to Parent(Q1), hence ultimately pointing
to the largest quasigroup from which Q2 has been created. The elements of
Q2 and the Cayley table of Q2 are then calculated relative to the parent of
Q2.

gap> L := AsLoop(Group((1,2,3),(1,2))); S := Subloop(L,[3]);
<loop of order 6>
<loop of order 2>
gap> Parent( S ) = L; PosInParent( S ); Elements( S );
true
[ 1, 3 ]
[ l1, l3 ]
gap> HasCayleyTable( S ); CayleyTable( S );
false
[ [ 1, 3 ], [ 3, 1 ] ]

Note that the Cayley table of a subquasigroup is created only upon
user's request.

1.4. Bijections as permutations on {1, . . . , n}
When calculating isomorphisms, isotopisms, or other bijections of quasi-
groups of order n, the result is always returned as a permutation (triple of
permutations) of {1, . . . , n}. Equivalently, the quasigroups in question are
�rst replaced by isomorphic copies with canonical Cayley tables, and only
then the bijections are calculated. It is always possible to reconstruct the
original bijection using the attribute PosInParent.

1.5. A few words about the implementation
One of the biggest strengths of the computer algebra system GAP is that
most algebraic structures can be de�ned within it. In this subsection we
brie�y explain how the variety of quasigroups is implemented in LOOPS.
In order to understand the implementation, we will need the following GAP
terminology:

� A �lter, such as IsInteger and IsPermGroup, is a special unary func-
tion on the set of GAP objects which returns either true or false.
Roughly speaking, a �lter is an a priori attribute of an object.
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� A category is a class of objects de�ned by a collection of �lters. An
object can lie in several categories. For example, a row vector lies in
the categories IsList and IsVector.

� All GAP objects are partitioned into families. The family of an object
determines its relation to other objects. For instance, all permutations
form a family, and groups presented by generators and relations form
another family. However, a family is not a collection of objects, but
abstract information about objects.

� Beside its name, a family can have further labels.

� Every GAP object has a type. The type of an object determines if a
given operation can be performed with that object, and if so, how it
is to be performed. The type of an object is derived from its family
and its �lters.

� A given data structure can be made into an object by specifying its
type, that is, its family and its �lters.

The following function constructs a quasigroup Q with Cayley table ct.
First we de�ne a family corresponding to the elements of Q and tell GAP
that it will consist of quasigroup elements. Then we objectify the individual
elements in this family, and label the family by the set of its elements, by the
size of Q, and by the Cayley table. Then we objectify Q whose family will
be the collection of its elements. Finally, we set some important attributes
of Q.

function( ct )
local F, Q, elms, n;
# constructing the family of the elements of this quasigroup
F := NewFamily( "QuasigroupByCayleyTableFam", IsQuasigroupElement );
# installing data ("labels") for the family
n := Length ( ct );
F!.size := n;
elms := Immutable( List( [1..n], i -> Objectify(

NewType( F, IsQuasigroupElement and IsQuasigroupElmRep), [ i ] ) ) );
F!.set := elms;
F!.cayleyTable := ct;
# creating the quasigroup by turning it into a GAP object
# the family of Q is the collection of its elements
Q := Objectify( NewType( FamilyObj( elms ),

IsQuasigroup and IsAttributeStoringRep ), rec() );
# setting some attributes for the quasigroup
SetSize( Q, n );
SetAsSSortedList( Q, elms );
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SetCayleyTable( Q, ct );
return Q;

end;

Operations in GAP are overloaded, i.e., the same operation can be ap-
plied to di�erent types of objects. In order to deal with this situation, GAP
uses a method selection: When an operation is called, GAP �rst checks the
types of the arguments, and then selects the appropriate method.

Here is how the multiplication of two quasigroup elements is imple-
mented:

InstallMethod( \*, "for two quasigroup elements",
IsIdenticalObj,
[ IsQuasigroupElement, IsQuasigroupElement ],

function( x, y )
local F;
F := FamilyObj( x );
return F!.set[ F!.cayleyTable[ x![ 1 ] ][ y![ 1 ] ] ];

end );

Note that the underlying quasigroup is easily accessed since the element
x knows into which quasigroup it belongs.

2. What is in the package
Here is a very brief overview of the methods implemented in LOOPS, ver-
sion 1.4.0. See the manual for (much) more details. Argument Q stands
for a quasigroup, and L for a loop. Thus the methods with argument Q
apply to both quasigroups and loops, while those with argument L apply
only to loops. Any additional restrictions on the arguments are listed in
parentheses. The symbol . is a shortcut for returns.

2.1. Basic methods and attributes
Cayley tables and elements:

Elements(Q) . list of elements of Q,
CayleyTable(Q) . Cayley table of Q,
One(L) . the neutral element of L,
MultiplicativeNeutralElement(Q) . the neutral element of Q, or fail
Size(Q) . the size of Q,
Exponent(L) . the exponent of L (L power-associative).
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Arithmetic operations:
LeftDivision(x, y) . x\y,
RightDivision(x, y) . x/y,
LeftDivisionCayleyTable(Q) . Cayley table of left division in Q,
RightDivisionCayleyTable(Q) . Cayley table of right division in Q.

Powers and inverses:
LeftInverse(x) . xλ, where xλx = 1,
RightInverse(x) . xρ, where xxρ = 1,
Inverse(x) . the two-sided inverse of x, if it exists.

Associators and commutators:
Associator(x, y, z) . the unique element u with (xy)z = (x(yz))u,
Commutator(x, y) . the unique element v with xy = (yx)v.

Generators:
GeneratorsOfQuasigroup(Q) . a generating subset of Q,
GeneratorsOfLoop(L) . a generating subset of L,
GeneratorsSmallest(Q) . a generating subset of Q of size 6 log2 |Q|.

Subquasigroups:
IsSubquasigroup(Q,S) . true if S is a subquasigroup of Q,
IsSubloop(L, S) . true if S is a subloop of L,
AllSubloops(L) . list of all subloops of L,
RightCosets(L, S) . right cosets modulo S (S ≤ L),
RightTransversal(L, S) . a right transversal modulo S (S ≤ L).

Translations and sections:
LeftTranslation(Q, x) . the left translation Lx by x in Q (x ∈ Q),
RightTranslation(Q, x) . the right translation Rx by x in Q (x ∈ Q),
LeftSection(Q) . the set of all left translations in Q,
RightSection(Q) . the set of all right translations in Q.

Multiplication groups:
LeftMultiplicationGroup(Q) . the left multiplication group of Q,
RightMultiplicationGroup(Q) . the right multiplication group of Q,
MultiplicationGroup(Q) . the multiplication group of Q,
RelativeLeftMultiplicationGroup(L, S) . the group generated by all

left translations of L restricted to S (S ≤ L),
RelativeRightMultiplicationGroup(L, S) . the group generated by all

right translations of L restricted to S (S ≤ L),
RelativeMultiplicationGroup(L, S) . the group generated by all

translations of L restricted to S (S ≤ L).
Inner mapping groups:
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InnerMappingGroup(L) . the inner mapping group of L,
LeftInnerMappingGroup(L) . the group generated by L−1

yx LyLx,
RightInnerMappingGroup(L) . the group generated by R−1

xy RyRx.
Nuclei:

LeftNucleus(Q) . the left nucleus of Q,
RightNucleus(Q) . the right nucleus of Q,
MiddleNucleus(Q) . the middle nucleus of Q,
Nuc(Q), NucleusOfQuasigroup(Q) . the nucleus of Q.

Commutant, center and associator subloop:
Commutant(Q) . {x ∈ Q; xy = yx for every y ∈ Q},
Center(Q) . the center of Q,
AssociatorSubloop(L) . the smallest S E L such that L/S is a group.

Normal subloops:
IsNormal(L, S) . true if S is a normal subloop of L,
NormalClosure(L, S) . the smallest normal subloop of L containing S,
IsSimple(L) . true if L is a simple loop.

Factor loops:
FactorLoop(L,N) . L/N (N normal subloop of L),
NaturalHomomorphismByNormalSubloop(L,N) . the projection

L → L/N (N normal subloop of L).
Central nilpotency and central series:

NilpotencyClassOfLoop(L) . the (central) nilpotency class of L,
IsNilpotent(L) . true if L is nilpotent,
IsStronglyNilpotent(L) . true if the mult. group of L is nilpotent,
UpperCentralSeries(L) . the upper central series of L,
LowerCentralSeries(L) . the lower central series of L,

Solvability:
IsSolvable(L) . true if L is solvable,
DerivedSubloop(L) . the derived subloop of L,
DerivedLength(L) . the derived length of L,
FrattiniSubloop(L) . the Frattini subloop of L (L strongly nilpotent).

Isomorphisms and automorphisms:
IsomorphismLoops(L,M) . an isomorphism of loops L → M , or fail,
LoopsUpToIsomorphism(ls) . �ltered list ls of loops up to isomorphism,
AutomorphismGroup(L) . the automorphism group of L,
IsomorphicCopyByPerm(Q, p) . an isomorphic copy of Q via the

permutation p,
IsomorphicCopyByNormalSubloop(L, S) . an isomorphic copy of L in
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which SEL occupies the �rst |S| elements of L and where the remaining
elements correspond to the cosets of S in L.

Isotopisms:
IsotopismLoops(L,M) . an isotopism L → M , or fail,
LoopsUpToIsotopism(ls) . �ltered list ls of loops up to isotopism.

2.2. Testing properties of quasigroups and loops
Associativity, commutativity and generalizations:

IsAssociative(Q) . true if Q is associative,
IsCommutative(Q) . true if Q is commutative,
IsPowerAssociative(L) . true if L is power associative,
IsDiassociative(L) . true if L is diassociative.

Inverse properties:
HasLeftInverseProperty(L) . true if xλ(xy) = y,
HasRightInverseProperty(L) . true of (yx)xρ = y,
HasInverseProperty(L) . true if xλ(xy) = y = (yx)xρ,
HasTwosidedInverses(L) . true if xλ = xρ,
HasWeakInverseProperty(L) . true if (xy)λx = yλ,
HasAutomorphicInverseProperty(L) . true if (xy)λ = xλyλ,
HasAntiautomorphicInverseProperty(L) . true if (xy)λ = yλxλ.

Some properties of quasigroups:
IsSemisymmetric(Q) . true if (xy)x = y,
IsTotallySymmetric(Q) . true if Q is semisymmetric and commutative,
IsIdempotent(Q) . true it x2 = x,
IsSteinerQuasigroup(Q) . true if Q is totally symm. and commutative,
IsUnipotent(Q) . true if x2 = y2,
IsLeftDistributive(Q) . true if x(yz) = (xy)(xz),
IsRightDistributive(Q) . true if (xy)z = (xz)(yz),
IsDistributive(Q) . true if Q is left and right distributive,
IsEntropic(Q), IsMedial(Q) . true if (xy)(uv) = (xu)(yv).

Loops of Bol-Moufang type:
IsExtraLoop(L) . true if x(y(zx)) = ((xy)z)x,
IsCLoop(L) . true if x(y(yz)) = ((xy)y)z,
IsMoufangLoop(L) . true if (xy)(zx) = (x(yz))x,
IsRCLoop(L) . true if x((yz)z) = (xy)(zz),
IsLCLoop(L) . true if (xx)(yz) = (x(xy))z,
IsRightBolLoop(L) . true if x((yz)y) = ((xy)z)y,
IsLeftBolLoop(L) . true if x(y(xz)) = (x(yx))z,
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IsFlexible(Q) . true if x(yx) = (xy)x,
IsRightNuclearSquareLoop(L) . true if x(y(zz)) = (xy)(zz),
IsMiddleNuclearSquareLoop(L) . true if x((yy)z) = (x(yy))z,
IsLeftNuclearSquareLoop(L) . true if (xx)(yz) = ((xx)y)z,
IsRightAlternative(Q) . true if x(yy) = (xy)y,
IsLeftAlternative(Q) . true if (xx)y = x(xy),
IsAlternative(Q) . true if it is both left and right alternative.

Power alternative loops:
IsLeftPowerAlternative(L) . true if xn(xmy) = xn+my,
IsRightPowerAlternative(L) . true if (xyn)ym = xyn+m,
IsPowerAlternative(L) . true if L is left and right power alternative.

Conjugacy closed loops:
IsLCCLoop(L) . true if left translations are closed under conjugation,
IsRCCLoop(L) . true if right translations are closed under conjugations,
IsCCLoop(L) . true if L is left and right conjugacy closed.

Additional varieties of loops:
IsLeftBruckLoop(L), IsLeftKLoop(L) . true if L is left Bol and has

the automorphic inverse property,
IsRightBruckLoop(L), IsRightKLoop(L) . true if L is right Bol and

has the automorphic inverse property.
Here is a nice, albeit trivial illustration of the �lters built into the LOOPS
package:
gap> L := LoopByCayleyTable([[1,2],[2,1]]);
<loop of order 2>
gap> IsLeftBolLoop(L); L;
true
<left Bol loop of order 2>
gap> IsRightBolLoop(L); L;
true
<Moufang loop of order 2>
gap> IsAssociative(L); L;
true
<associative loop of order 2>

2.3. Libraries
Several libraries of small loops up to isomorphism are included in LOOPS.
As of version 1.4.0, the libraries contain:

� all nonassociative left Bol loops of order 6 16,

� all nonassociative Moufang loops of order 6 64 and = 81,
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� all nonassociative Steiner loops of order 6 16,

� all (three) nonassociative conjugacy closed loops of order p2, for every
odd prime p,

� all (one) nonassociative conjugacy closed loops of order 2p, for every
odd prime p,

� the smallest nonassociative simple Moufang loop (of order 120),

� all nonassociative loops of order 6 6.

There is also a library of all nonassociative loops of order 6 6 up to iso-
topism.

The mth loop of order n in a given library can be retrieved via

LeftBolLoop(n,m), MoufangLoop(n,m),

and so on.
We took great care to store the information in the libraries e�ciently.

For instance, the library of Moufang loops can be packed into less than 18
kilobytes, hence averaging about 4 bytes per loop.

Remark 2.1. All nonassociative Moufang loops of orderless than 64
can be found in [7]. Our numbering for these loops agrees with [7].

The 4262 nonassociative Moufang loops of order 64 were �rst con-
structed in [18], but it was proved (computationally) only in [16] that the
list is complete.

The 2038 nonassociative left Bol loops of order 16 were enumerated for
the �rst time by Moorhouse [12]. The �rst author obtained the same result
by a di�erent method, on which he will report in a separate paper [14].

The fact that for every odd prime p there are precisely three nonasso-
ciative conjugacy closed loops of order p2 was established by Kunen [10].
Drápal and Csörg® derived simple formulas for multiplication in these three
loops [4]. When p is an odd prime, Wilson [19] constructed a nonassociative
conjugacy closed loop of order 2p, and Kunen [10] showed there are no other
such loops.

Our counts of small loops agree with the known results, e.g. [11].
The library of small Steiner loops is based on [2].
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3. Constructing isomorphisms

There does not appear to be much research on the problem of �nding an
isomorphism between loops. In this section we explain the approach used
in LOOPS. It works surprisingly well for many varieties of loops, including
Moufang loops.

Let Q be a loop, and let P be a set of properties (of elements) invariant
under isomorphisms. The nature of P depends on Q. For instance, when Q
is power-associative, one of the invariant properties for an element x might
be the order |x|.

Given P and a collection C of loops, de�ne an equivalence on the (dis-
joint) union of C by x ∼ y if and only if ϕ(x) = ϕ(y) for every ϕ ∈ P.
Then, if f : Q → L is an isomorphism and C = {Q, L}, we must have
x ∼ f(x) for every x ∈ Q. In other words, P partitions the elements into
blocks invariant under isomorphism.

In order to �nd an isomorphism, we need a set of invariants P that is
easy to calculate but results in a �ne partition.

We have used the following invariants P for power-associative loops:

ϕ1(x) = |x|,
ϕ2(x) = |{y; y2 = x}|,
ϕ3(x) = |{y; y4 = x}|,

ϕ4,k(x) = |{y; xy = yx, |y| = k}|, for k ≥ 1.

The algorithm searching for an isomorphism f : Q → L �rst orders the
equivalence classes of ∼ by increasing size on both Q and L. If the equiva-
lence class sizes of Q and L do not match, it is clear that no isomorphism
f : Q → L exists, and fail is returned. Otherwise, a backtrack search
attempts to �nd an isomorphism respecting the partitions of ∼.

It would be an interesting project to analyze the speed of the algorithm
depending on the choice of P. We do not claim that the above P is optimized
in any sense. Note, for instance, that the invariants ϕ2, ϕ3 are useless for
many power associative loops of odd order, and ϕ4,k are useless for all
commutative loops.
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4. Classi�cation of small Frattini Moufang loops
of order 64

Let L be a loop and let the Frattini subloop Φ(L) be the normal subloop
generated by all squares, commutators and associators of L. In other words,
Φ(L) is the smallest normal subloop such that L/Φ(L) is an elementary
abelian p-group. Following Hsu [9], we say that L is a small Frattini p-loop
if |Φ(L)| 6 p.

In this section, L will denote a small Frattini Moufang 2-loop of order
2n+1. Moreover, in order to avoid trivialities, we assume that |Φ(L)| = 2.
Clearly, Φ(L) ≤ Z(L), L is nilpotent of class 2, and it has a unique nontrivial
square, commutator and associator element.

Remark 4.1. Small Frattini Moufang 2-loops are also called code loops due
to their connection to doubly even linear binary codes. Some of these loops
play an important role in the description of large sporadic simple groups.

We consider V = L/Φ(L) as a vector space over F2, and we identify Φ(L)
and F2. In particular, we sometimes write the group operations additively.

Let us take arbitrary elements u = x mod Φ(L), v = y mod Φ(L),
w = z mod Φ(L) of V . Then, the following maps are well de�ned:

σ : V → F2, σ(u) = x2,
κ : V × V → F2, κ(u, v) = [x, y],
α : V × V × V → F2, α(u, v, w) = [x, y, z].

Moreover, α is an alternating trilinear form, κ is alternating, and we have

σ(u + v) = σ(u) + σ(v) + κ(u, v),
κ(u + v, w) = κ(u,w) + κ(v, w) + α(u, v, w).

Hence, by de�nition, V is a symplectic cubic space.
There are di�erent ways in which a small Frattini Moufang 2-loop is

obtained from a symplectic cubic space (cf. Griess [8], Chein and Goodaire
[1], Hsu [9]). All of the above constructions induct on the dimension of V .
In contrast, a new approach, [13], takes advantage of groups with triality
and constructs the loop globally.

For this, let σi, κij and αijk be the structure constants of σ, κ, α with
respect to a �xed basis ov V . We de�ne the group G with gerenators
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gi, fi, hi, i ∈ {1, . . . , n}, u and v by the following relations:

g2
i = uσi , f2

i = vσi , h2
i = u2 = v2 = 1,

[gi, gj ] = uκij , [fi, fj ] = vκij ,

[gi, fj ] = (uv)κij

n∏

k=1

h
αijk

k ,

[gi, hj ] = uδij , [fi, hj ] = vδij ,

[hi, hj ] = [gi, u] = [fi, u] = [hi, u] = [gi, v] = [fi, v] = [hi, v] = 1.

Then, G is a group and the maps

τ : gi ↔ fi, hi 7→ hi, u ↔ v

ρ : gi 7→ fi, fi 7→ (gifi)−1, hi 7→ hi, u 7→ v, v 7→ uv

extend to triality automorphisms of G. The following function returns the
Moufang loop associated to the group G with triality automorphisms τ, ρ:
TrialityGroupToLoop := function( G, tau, rho )

local ccl, ct;
ccl := Elements( ConjugacyClass( G, tau ) );
ct := List( ccl, s1 ->

List( ccl, s2 ->
Position( ccl, s1^rho * s2^(rho^2) * s1^rho )

)
);

return LoopByCayleyTable( NormalizedQuasigroupTable( ct ) );
end;

To complete the classi�cation of small Frattini Moufang 2-loops of order
64, it now su�ces to classify the symplectic cubic spaces of order 32. For a
�xed basis, such a space is given by

(
5
3

)
+

(
5
2

)
+ 5 = 25

structure constants, which give rise to a 25-dimensional vector space W over
F2.

Any linear map A of V de�nes a new symplectic cubic space with maps

σA(u) = σ(Au), κA(u, v) = κ(Au,Av), αA(u) = α(Au,Av, Aw),

and hence A induces a linear map on W . This de�nes an action of GL(5, 2)
on W .
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It is easy to show the 1-1 correspondence of loop isomorphisms and
linear isomorphisms of symplectic cubic spaces. This implies that the orbits
of GL(5, 2) on W will correspond precisely to the isomorphism classes of
small Frattini Moufang 2-loops of order 64.

Since |GL(5, 2)| and 225 are still too large for GAP to compute the
needed orbits, one has to have a closer look at invariant subspaces of W .
Once this is done, the classi�cation is complete, with the result that there
are precisely 80 nonisomorphic small Frattini Moufang loops of order 64.

5. An interesting Csörg® loop
One of the longer-standing problems in loop theory was the question if
there is a loop with nilpotency class higher than two whose inner mapping
group is abelian. In [3], Csörg® constructed such a loop (of order 128 and
nilpotency class 3). The following GAP code returns this loop L. The code
follows [3], where some insight is given.

# constructing a group of order 8192 by presenting relations
f := FreeGroup(13);
G := f/[ f.1^2, f.2^2, f.3^2, f.4^2, f.5^2, f.6^2, f.7^2, f.8^2, f.9^2, f.10^2,
f.11^2, f.12^2, f.13^2, (f.1*f.2)^2, (f.1*f.3)^2, (f.1*f.4)^2, (f.1*f.5)^2,
(f.1*f.6)^2, (f.1*f.7)^2, (f.1*f.8)^2, (f.1*f.9)^2, (f.1*f.10)^2, (f.1*f.11)^2,
(f.1*f.12)^2, (f.1*f.13)^2, (f.2*f.3)^2, (f.2*f.4)^2, (f.3*f.4)^2, (f.2*f.5)^2,
(f.2*f.6)^2, (f.2*f.7)^2, (f.3*f.5)^2, (f.3*f.6)^2, (f.3*f.7)^2, (f.4*f.5)^2,
(f.4*f.6)^2, (f.4*f.7)^2, (f.2*f.9)^2, (f.2*f.10)^2, (f.3*f.8)^2, (f.3*f.10)^2,
(f.4*f.8)^2, (f.4*f.9)^2, f.1*f.2*f.8*f.2*f.8, f.1*f.3*f.9*f.3*f.9,
f.1*f.4*f.10*f.4*f.10, (f.2*f.11)^2, (f.2*f.12)^2, (f.2*f.13)^2, (f.3*f.11)^2,
(f.3*f.12)^2, (f.3*f.13)^2, (f.4*f.11)^2, (f.4*f.12)^2, (f.4*f.13)^2, (f.5*f.6)^2,
(f.5*f.7)^2, (f.6*f.7)^2, (f.5*f.9)^2, (f.5*f.10)^2, (f.6*f.8)^2, (f.6*f.10)^2,
(f.7*f.8)^2, (f.7*f.9)^2, f.1*f.5*f.8*f.5*f.8, f.1*f.6*f.9*f.6*f.9,
f.1*f.7*f.10*f.7*f.10, (f.5*f.12)^2, (f.5*f.13)^2, (f.6*f.11)^2, (f.6*f.13)^2,
(f.7*f.11)^2, (f.7*f.12)^2, f.1*f.11*f.5*f.11*f.5, f.1*f.12*f.6*f.12*f.6,
f.1*f.13*f.7*f.13*f.7, f.2*f.5*f.9*f.10*f.9*f.10, f.3*f.6*f.8*f.10*f.8*f.10,
f.4*f.7*f.8*f.9*f.8*f.9, (f.8*f.11)^2, (f.9*f.12)^2, (f.10*f.13)^2,
f.8*f.12*f.8*f.4*f.12*f.7, f.8*f.13*f.8*f.3*f.13*f.6, f.10*f.11*f.10*f.3*f.11*f.6,
f.9*f.11*f.9*f.11*f.7, f.9*f.13*f.9*f.13*f.5, f.10*f.12*f.10*f.12*f.5,
(f.11*f.12)^2, (f.11*f.13)^2, (f.12*f.13)^2 ];
# auxiliary data
g := GeneratorsOfGroup(G);
N := Subgroup( G, [ g[5], g[6], g[7], g[1] ] );
W := Subgroup( G, [ g[5]*g[2], g[6]*g[3], g[7]*g[4], g[1] ] );
A_0 := [ One(G), g[8], g[9], g[10], g[8]*g[9], g[8]*g[10], g[9]*g[10]*g[2],

g[8]*g[9]*g[10]*g[2] ];
B_0 := [ One(G), g[8]*g[11], g[9]*g[12], g[10]*g[13], g[8]*g[11]*g[9]*g[12],

g[8]*g[11]*g[10]*g[13]*g[3], g[9]*g[12]*g[10]*g[13],
g[8]*g[11]*g[9]*g[12]*g[10]*g[13]*g[3] ];

A := Union( List( Elements( N ), x -> A_0*x ) );
B := Union( List( Elements( W ), x -> B_0*x ) );
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H := Subgroup( G, [ g[2], g[3], g[4], g[11], g[12], g[13] ] );
# constructing the loop
ListPosition := function( S, x )

local i; i := 1; while not x in S[i] do i := i + 1; od; return i;
end;
m := MappingByFunction( Domain(Elements( G)), Domain([1..8192]),

x -> Position( Elements(G), x ) );
CA := List( A, x -> x*Elements( H ) );
mCA := List( CA, c -> Set( c, x -> x^m ) );
T := List([1..128],i->[1..128]);
for ii in [1..128] do for jj in [1..128] do

T[ii][jj] := ListPosition( mCA, (A[ii]*B[jj])^m );
od; od;
p := SortingPerm( T[1] );
T := List( T, r -> Permuted( r, p ) );
L := LoopByCayleyTable( T );

In addition, the following properties hold for L: (a) the nucleus of L is
elementary abelian of order 16, (b) the left and middle nuclei have order
32, (c) the right nucleus has order 16, (d) the two-element center coincides
with the associator subloop.

An interesting, more symmetric loop K is obtained from L by this greedy
algorithm:

Given a groupoid Q, let µ(Q) = |{(a, b, c) ∈ Q×Q×Q; a(bc) 6= (ab)c}|.
Hence µ(Q) is a crude measure of (non)associativity of Q.

Let T be a multiplication table of L split into blocks of size 16 × 16
according to the cosets of the nucleus of L. Let h be the nontrivial central
element of L.

(*) For 1 6 i 6= j 6 16, let Tij be obtained from T by multiplying the
(i, j)th block and the (j, i)th block of T by h. Let (s, t) be such that µ(Tst)
is minimal among all µ(Tij). If µ(Tst) ≥ µ(T ), stop, and return T . Else
replace T by Tst, and repeat (*).

It turns out that the multiplication table T found by the above greedy
algorithm yields another loop K of nilpotency class 3 whose inner mapping
group is abelian. In addition, the following properties hold for K: (a)
the nucleus is elementary abelian of order 16, (b) the left, middle, and right
nuclei have order 64, (c) the two-element center coincides with the associator
subloop. In particular, K is not isomorphic to L. Among other peculiar
features, it contains a nonassociative power associative loop of order 64 that
is the union of its nuclei.

The construction of L takes a minute or so in GAP, since calculations
in free groups are slow. A more direct, systematic, and much faster con-
struction of L and K will be presented elsewhere [5].
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Connected transversals and
multiplication groups of loops

Markku Niemenmaa and Miikka Rytty

Abstract

Several properties of loops and their multiplication groups can be reduced to the proper-
ties of connected transversals in groups. We discuss these transversals and prove group
theoretical results which have direct loop theoretical consequences. We are particularly
interested in the case where the inner mapping group is abelian and we show that it can
never be a �nite nontrivial cyclic group.

1. Introduction
The purpose of this paper is to explore the connection between loops and
groups. The left and right translations of a loop Q generate a group M(Q)
called the multiplication group of the loop. The multiplication group can be
characterized in purely group theoretical terms (Theorem 5.1 of this paper)
and the notion of connected transversals to a subgroup H in a group G is
central to this characterization. Here G corresponds to M(Q) and H is the
inner mapping group I(Q) of Q.

The �rst three sections are devoted to H-connected transversals in a
group G. We consider their basic properties and after that we are partic-
ularly interested in the case where H is abelian (the subcase where H is
cyclic gets a very thorough treatment in section four). One of our goals is to
show how loop theory is a source of interesting group theoretical problems
� some of which are not easy at all to solve. Our results are not necessarily
new but some of the proofs are and, in some cases, we have added some
new spice to the old proofs. The reader should not be worried about the

2000 Mathematics Subject Classi�cation: 20D10, 20N05
Keywords: loop, group, connected transversals
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amount of group theory in this paper. After all, groups are nothing but
associative loops.

In sections �ve and six we go to the other direction: we introduce the
loop theoretic interpretations of the results that we have proved in the group
theory sections. We see that the inner mapping group I(Q) can never be a
�nite nontrivial cyclic group and we also see that �nite loops with abelian
inner mapping groups are centrally nilpotent. We also discuss the recent
interesting results and constructions where the inner mapping group I(Q)
is an abelian p-group and the nilpotency class of Q equals either two or
three.

As pointed out earlier, our approach is based on abstract group theory
and the e�cient use of connected transversals. Naturally, it is possible
to deal with these problems by using permutation group theory combined
with elementary (or advanced) loop theory (see Drápal [7]). We shall not go
into the details of this approach in this paper and we also omit some other
important questions like the relation between solvable loops and solvable
multiplication groups or the structure of multiplication groups in the case
of Moufang loops. The reader interested in these topics should consult
Vesanen [16] and the excellent survey by Nagy and Vojt¥chovský [13].

Some words about our notation. We bring with us some bad habits from
abstract group theory: we write maps to the left of their arguments. If G
is a group and x, y are two elements from G, the commutator x−1y−1xy
is denoted by [x, y]. If X,Y are nonempty subsets of G, then [X,Y ] =
〈[x, y] | x ∈ X, y ∈ Y 〉, the subgroup generated by all commutators [x, y].
The subgroup G′ = [G,G] is the derived group (or commutator subgroup)
of G.

If H is a subgroup of G, then the largest normal subgroup of G contained
in H is said to be the core of H in G and we denote it by HG (thus HG =⋂

x∈G Hx). The conjugate of H is the subgroup x−1Hx which we denote by
Hx. The subgroup NG(H) = {x ∈ G | Hx = H} is the normalizer of H in
G. A subgroup H is subnormal in G, if there are subgroups H0,H1, . . . , Hn

of G such that H0 = H, Hn = G and Hi−1 is normal in Hi for every
i = 1, 2, . . . , n. We say that H is a characteristic subgroup of G, if H
is invariant under every automorphism of G. Naturally, if N is a normal
subgroup of G and M is a characteristic subgroup of N , then M is normal in
G. Finally, we assume that the reader is familiar with the Sylow theorems.
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2. Connected transversals in groups
Let G be a group and H ≤ G. A subset A of G is said to be a left transversal
to H in G if it contains exactly one element from each left coset of H. A
right transversal is de�ned similarly. If A and B are two left transversals
to H in G and [A, B] ≤ H, then we say that these two transversals are H-
connected. In the case that [A,A] ≤ H, we say that A is H-selfconnected.
If A and B are H-connected transversals, then A and B are both left and
right transversals to H in G (see [14], Lemma 2.1).

We shall now prove some elementary results about connected transver-
sals. These results turn out to be very useful when we prove more sub-
stantial results which have interesting interpretations in loop theory. In the
following lemmas A and B are H-connected transversals to H in G. Thus
a−1b−1ab ∈ H for every a ∈ A and b ∈ B.

Lemma 2.1. If HG = 1, then Z(G) ⊆ A ∩B.

Proof. Let z ∈ Z(G) and assume that z = ah, where a ∈ A and h ∈ H.
Then b−1hb = b−1a−1zb = b−1a−1bz = b−1a−1bah ∈ H for every b ∈ B.
Thus h ∈ ⋂

b∈B Hb−1
= 1, hence z = a ∈ A. In similar way, we can show

that z ∈ B.

Remark 2.2. If HG = 1, then by Lemma 2.1, 1 ∈ A ∩B.

Lemma 2.3. Let C ⊆ A ∪B and K = 〈H,C〉. Then C ⊆ KG.

Proof. Let c ∈ C and assume that c ∈ A and x = bh, where b ∈ B and
h ∈ H. Now x−1c−1x = h−1b−1c−1bh = h−1b−1c−1bcc−1h. As b−1c−1bc ∈
H, we may conclude that x−1c−1x ∈ K, hence x−1cx ∈ K and c ∈ KG. If
c ∈ B, then the same conclusion holds.

In the proof of our following lemma, we need two results on commuta-
tors:

1. [xy, z] = [x, z]y [y, z] and

2. if H ≤ G, then [H,G] is a normal subgroup of G.

For the proofs, see [10], p. 253− 255.

Lemma 2.4. If HG = 1, then NG(H) = H × Z(G).
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Proof. Let K = NG(H) = A1H = B1H, where A1 ⊆ A and B1 ⊆ B. As
H is normal in K and K/H is abelian, we may conclude that K ′ ≤ H. By
Lemma 2.3, 〈A1, B1〉 ≤ KG. Thus [A1, B1] ≤ K ′

G ≤ K ′ ≤ H. Now K ′
G is

normal in G and since HG = 1, it follows that K ′
G = [A1, B1] = 1.

If g = ah ∈ G (here a ∈ A and b ∈ H) and b ∈ B1, then [b, g] =
b−1h−1a−1bah = kb−1a−1bah, where k ∈ H. Thus [b, g] ∈ H. As KG is
abelian and a−1b−1a ∈ KG, we have

[
b−1, g

]
= bh−1a−1b−1ah = dba−1b−1ah

= da−1b−1abh ∈ H (here d ∈ H). Further, if b, c ∈ B1, then [bc, g] =
[b, g]c [c, g] ∈ H. Thus D = [〈B1〉, G] ≤ H and since D is normal in G and
HG = 1, it follows that [〈B1〉, G] = 1 and 〈B1〉 ≤ Z(G). Now it is clear that
NG(H) = H × Z(G).

Lemma 2.5. If HG = 1 and [A,B] = 1, then A and B are isomorphic
subgroups of G.

Proof. If we write C = 〈A〉 ∩H, then bc = cb for every c ∈ C and b ∈ B. If
x ∈ G, then x = bh, where b ∈ B and h ∈ H. Thus x−1cx = (bh)−1cbh =
h−1b−1cbh = h−1ch ∈ H whenever c ∈ C. This means that c ∈ Hx for
every x ∈ G and, in fact, c ∈ HG = 1. We have shown that 〈A〉 ∩H = 1
and therefore 〈A〉 = A. It is also clear that 〈B〉 = B. For every a ∈ A
there exists a unique f(a) ∈ B such that a−1H = f(a)H. If a, d ∈ A, then
f(ad)H = (ad)−1H = d−1f(a)H = f(a)d−1H = f(a)f(d)H and we see
that A ∼= B.

We conclude this section by proving a result which deals with simple
groups.

Lemma 2.6. If G is a simple group and H is a proper subgroup of G, then
H is maximal in G.

Proof. Let a ∈ (G \H)∩A and write K = 〈a, H〉. By Lemma 2.3, a ∈ KG.
As KG > 1 and G is simple, it follows that KG = G. But then K = G, and
thus H is a maximal subgroup of G.

3. Connected transversals to abelian subgroups
In this section we assume that H ≤ G is an abelian p-group (for a prime
number p) and there exist H-connected transversals A and B in G. For
the proof of our next theorem we need the following well-known result by
Burnside (see [10], p. 419− 420).
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Lemma 3.1. Let G be a �nite group and P a Sylow p-subgroup of G such
that P ≤ Z(NG(P )) (or NG(P ) = CG(P )). Then there exists a normal
subgroup K of G such that G = KH and K ∩H = 1.

Now we are ready to prove

Theorem 3.2. Let G be a �nite group and H ≤ G an abelian p-group.
Assume further that HG = 1 and G = 〈A,B〉. Then Z(G) > 1.

Proof. Assume that the claim is not true and Z(G) = 1. As HG = 1, we
can apply Lemma 2.4 and thus NG(H) = H × Z(G) = H. If H < P ≤ G,
where P is a p-group, then H < NP (H), a contradiction. We conclude that
H is a Sylow p-subgroup of G. Now NG(H) = CG(H) and by Lemma 3.1
there exists a normal subgroup K of G such that G = KH and K ∩H = 1.
As G/K ∼= H is abelian, it follows that G′ ≤ K. Thus a−1b−1ab ∈ G′∩H ≤
K ∩H = 1 and we get ab = ba for every a ∈ A and b ∈ B.

The subgroup L = H ∩ 〈A〉 is normal in H and as NG(L) ⊇ B, it
follows that NG(L) ≥ 〈H, B〉 = G. Since HG = 1, we conclude that L = 1.
This means that 〈A〉 = A is a normal subgroup of G. Similarly, B is a
normal subgroup of G. Thus K = A = B and as G = 〈A,B〉, we have a
contradiction. We conclude that Z(G) > 1.

Corollary 3.3. Assume that the conditions of Theorem 3.2 hold for G and
H. Then H is subnormal in G.

Remark 3.4. By using a similar but somewhat more complicated argu-
mentation we could prove that the result of Theorem 3.2 also holds in the
case that H is an abelian subgroup. Naturally, in this case H would be
subnormal in G, too.

4. Connected transversals to cyclic subgroups
We �rst consider the situation that H is cyclic of order p (here p is a prime
number) and then we proceed to more general cases. Naturally A and B
are connected transversals to H in G.

Lemma 4.1. Let H be a cyclic subgroup of order p. If G = 〈A, B〉, then
G′ ≤ H.

Proof. If HG > 1, then H = HG is normal in G and G′ ≤ H. Thus we
assume that HG = 1. By Lemma 2.4 we know that NG(H) = H × Z(G).
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Let a ∈ A and b ∈ B such that aH = bH and a−1b 6= 1. Then
H = 〈a−1b〉 and (a−1b)a = a−1ba = a−1bb−1a−1ba ∈ H. This means that
a ∈ NG(H) = H × Z(G), hence a ∈ Z(G). By Lemma 2.1, it follows that
A = B.

Let a and d be two elements from A. If a, d ∈ Z(G), then ad ∈ Z(G) ⊆
A. Now assume that a 6∈ Z(G) and write ad = ch, where c ∈ A and
h ∈ H. It follows that d−1a−1da = d−1a−1a−1ada = h−1c−1a−1cha =
h−1c−1a−1caa−1ha ∈ H and thus ha ∈ H. If h 6= 1, then a ∈ NG(H), hence
a ∈ Z(G), a contradicting the choise of a. Thus h = 1 and ad = c ∈ A.
Furthermore, let a−1 = bh where b ∈ A and h ∈ H. Then h = b−1a−1 and
h−1 = ab ∈ A ∩H = 1. Thus a−1 ∈ A and A = B is a subgroup of G and
this contradicts the condition G = 〈A,B〉.

Now we proceed to the situation where H is a cyclic group of prime
power order. In the following lemma we can very e�ciently use the result
of Theorem 3.2.

Lemma 4.2. Let G be a �nite group and H ≤ G a cyclic p-group. If
G = 〈A,B〉, then G′ ≤ H.

Proof. Let G be a minimal counterexample. If HG > 1, then we consider
the group G/HG and the subgroup H/HG. Then (G/HG)′ ≤ H/HG, hence
G′ ≤ H.

Thus we may assume that HG = 1. By Theorem 3.2, Z(G) > 1. Let
z ∈ Z(G) such that |z| = q, where q is a prime number. We now consider
the groups G/〈z〉 and H〈z〉/〈z〉 and conclude that G′ ≤ H〈z〉. This means
that H〈z〉 is normal in G. If p 6= q, then H is a Sylow p-subgroup of H〈z〉.
As H is characteristic in H〈z〉, it follows that H is normal in G and G′ ≤ H.
Thus we may assume that q = p. We write E = 〈xp | x ∈ H〈z〉〉. Clearly,
E ≤ H and as E is characteristic in H〈z〉, it follows that E is normal in G.
Since HG = 1, we conclude that E = 1 and thus |H| = p. Now the claim
follows from Lemma 4.1.

We are now ready to prove our main result on connected transversals to
cyclic subgroups.

Theorem 4.3. Let G be a �nite group and H a cyclic subgroup. If G =
〈A,B〉, then G′ ≤ H.

Proof. Let G be a minimal counterexample. Clearly, we can assume that
HG = 1 and H is not of prime power order. If NG(H) > H, then Z(G) > 1
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by Lemma 2.1. Let z ∈ Z(G) and |z| = q, where q is a prime number. Then
G′ ≤ H〈z〉 and H contains a Sylow p-subgroup P (with p 6= q) such that P
is normal in G, a contradiction.

Thus we may assume that NG(H) = H. Let P be a Sylow p-subgroup
of H such that NG(P ) > H. Now CG(P ) is normal in NG(P ) and therefore
CG(P ) > H. If CG(P ) = G, then P is normal in G, which is not possible.
Thus G has a subgroup T such that H < T ≤ CG(P ) < G. By Lemma
2.3, TG > 1. We consider the groups G/TG and HTG/TG = T/TG and get
G′ ≤ T . It follows that T is normal in G. Now P ≤ Z(T ) and Z(T ) ≤ H.
Since Z(T ) is characteristic in T , we conclude that Z(T ) is normal in G.
As HG = 1, this is not possible.

Thus we may assume that NG(P ) = CG(P ) = H for every Sylow sub-
group P of H. All Sylow subgroups of H are also Sylow subgroups of G and
by applying Lemma 3.1, we conclude that there exist a normal subgroup K
of G such that G = KH and K ∩H = 1. By standard arguments (as in the
proof of Theorem 3.2), it follows that K = A = B is a normal subgroup of
G. But this contradicts G = 〈A,B〉 and our proof is ready.

We shall next prove that the result of Theorem 4.3 also holds in the case
that G is in�nite. We �rst introduce a useful lemma (which was introduced
to the �rst author by Tomá² Kepka some thirteen years ago).

Lemma 4.4. Let H be a �nite subgroup of G, HG = 1 and G = 〈A,B〉.
Then G/Z(G) is �nite.

Proof. Let a be a �xed element of A, h �xed element of H and write
F (a, h) = {b ∈ B | a−1b−1ab = h}. If b, c ∈ F (a, h), then bc−1 ∈ CG(a) and
b ∈ CG(a)c. Thus F (a, h) ⊆ CG(a)b(h), where b(h) is a �xed element from
F (a, h). Further, B =

⋃
F (a, h), where h goes through all the elements of

H. Now G = BH ⊆ CG(a){b(h) | h ∈ H}H, hence [G : CG(a)] ≤ |H|2.
As H is a �nite subgroup of 〈A,B〉, we may conclude that [G : CG(H)] is
�nite. Then [G : NG(H)] is �nite and since NG(H) = H × Z(G), we have
G/Z(G) �nite.

Theorem 4.5. Let H be a �nite cyclic subgroup of G and let G = 〈A,B〉.
Then G′ ≤ H.

Proof. We proceed by induction on |H|. It is obvious that we may assume
that HG = 1. By using Lemma 4.4, we consider the �nite group G/Z(G)
and its cyclic subgroup HZ(G)/Z(G). By Theorem 4.3, G′ ≤ HZ(G).
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Let p | |H| be a prime number and E = 〈x ∈ HZ(G) | xp = 1〉. Now
E is characteristic in HZ(G), hence E is normal in G. As |HE/E| < |H|,
we apply induction and get G′ ≤ HE. Thus HE is normal in G. The
group L = 〈xp | x ∈ HE〉 is characteristic in HE and L ≤ H is normal in
G. Since HG = 1, it follows that |H| = p. But now the result follows from
Lemma 4.1.

Remark 4.6. By using Zorn's lemma and the result of the previous theorem
it is possible to prove that G′ ≤ H also in the case that H is an in�nite
cyclic group (for the details, see [12]).

Remark 4.7. Drápal [7] uses elementary loop theory combined with per-
mutation group theory and proves results which are basicly the same as
the preceding results of this section. In Drápal's article it also remains an
open question whether it is necessary to use Zorn's lemma when proving
the result of Theorem 4.5 for an in�nite cyclic subgroup H.

We now have a very good understanding of the situation when H is a
�nite cyclic subgroup of G and G = 〈A,B〉. How does the situation change
if H ∼= Cp × Cp?

Theorem 4.8. Let H ∼= Cp × Cp and G = 〈A,B〉. Then G′ ≤ NG(H).

Proof. If HG > 1, then G′ ≤ H by Lemma 4.1. Thus we may assume that
HG = 1. By Lemma 2.4, NG(H) = H × Z(G) and from Lemma 4.4 we
conclude that G/Z(G) is �nite. Consider the subgroup HZ(G)/Z(G) of
G/Z(G). If the core of HZ(G) in G properly contains Z(G), then G′ ≤
HZ(G) = NG(H) (again we use Lemma 4.1). We next assume that the
core of HZ(G) in G is Z(G). By Lemma 2.4,

NG/Z(G)(HZ(G)/Z(G)) = HZ(G)/Z(G)× Z(G/Z(G)).

We write M/Z(G) = Z(G/Z(G)). Then NG(HZ(G)) = HM , where M is
normal in G and H ∩M = 1. By Theorem 3.2, Z(G) is a proper subgroup
of M . Then we write HM = CH = DH, where C ⊆ A and D ⊆ B. By
Lemma 2.1, M/Z(G) ⊆ AZ(G)/Z(G) ∩ BZ(G)/Z(G), which means that
M ⊆ CZ(G) ∩ DZ(G). If m ∈ M , then m = cz1 = dz2, where c ∈ C,
d ∈ D and z1, z2 ∈ Z(G). If x ∈ A ∪ B, then [x,m] ∈ M ∩ H = 1. Thus
CG(m) ≥ 〈A,B〉 = G and consequently m ∈ Z(G). But then M = Z(G), a
contradiction.
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If H ∼= Cp × Cp × Cp, then things get more complicated. However, in
2006 Csörg® [5] managed to prove the following

Theorem 4.9. If G is �nite group, H ∼= Cp × Cp × Cp and G = 〈A,B〉,
then G′ ≤ NG(H).

5. Multiplication groups of loops
Let Q be a loop (a groupoid with unique division and neutral element e).
For each a ∈ Q we have two permutations La (left translation) and Ra

(right translation) on Q de�ned by La(x) = ax and Ra(x) = xa for every
x ∈ Q. The set of all left and right translations generates a subgroup M(Q)
of SQ called the multiplication group of the loop Q. The stabilizer of the
neutral element e is called the inner mapping group of the loop Q and we
denote it by I(Q). The concept of multiplication groups was introduced by
Albert in [1] and [2] and in his famous article [3], Bruck laid the foundation
for the theory of multiplication and inner mapping groups. If Q is a group,
then I(Q) consists of the inner automorphims of Q. It is well-known that
the inner mapping group is generated by the set

{R−1
yx RxRy, L

−1
xy LxLy, L

−1
x Rx | x, y ∈ Q}.

If we write A = {La | a ∈ Q} and B = {Ra | a ∈ Q}, then A and B are
transversals to I(Q) in M(Q) and as L−1

a R−1
b LaRb(e) = e, we see that A

and B are I(Q)-connected transversals in M(Q). Now M(Q) is transitive
on Q and therefore, if 1 < N ≤ I(Q), N is not normal in M(Q) (thus
the core of I(Q) in M(Q) is trivial). As a matter of fact, we have now
introduced all the properties which completely characterize multiplication
groups of loops. We state this characterization that was proved by Kepka
and Niemenmaa [14] in 1990 as

Theorem 5.1. A group G is isomorphic to the multiplication group of a
loop if and only if there exist a subgroup H of G satisfying HG = 1 and
H-connected transversals A and B such that G = 〈A,B〉.
Proof. Assume that the group G has a subgroup H and H-connected transver-
sals A and B satisfying the conditions of the theorem. For each x ∈ G there
exists exactly one f(x) of A such that xH = f(x)H. Let K be the set of
left cosets of H. Now we de�ne a binary operation (∗) on the set K by
(xH) ∗ (yH) = f(x)yH.
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If xH = uH and yH = vH, then f(x) = f(u) and f(x)yH = f(x)vH =
f(u)vH. We conclude that (∗) is well-de�ned. Now we shall show that the
groupoid (K, ∗) is a loop. By Lemma 2.1, we have that 1 ∈ A. Therefore
(1H)∗(yH) = f(1)yH = yH and (xH)∗(1H) = f(x)H = xH, which means
that 1H is the neutral element of K. If xH and yH are �xed elements in
(xH) ∗ (yH) = zH, then yH = f(x)−1zH is a unique element from the set
K. Respectively let yH and zH be known elements in K and consider the
equation (xH) ∗ (yH) = zH. For every y ∈ G there exists exactly one g(y)
of B such that yH = g(y)H. Since A and B are H-connected, we have
(xH) ∗ (yH) = f(x)g(y)H = g(y)f(x)H = g(y)xH. Thus xH = g(y)−1zH
is the unique solution for the equation (xH) ∗ (yH) = zH, so the groupoid
(K, ∗) is a loop.

Now we consider the action of G on K by left multiplication as its
permutation representation is a homomorphism from G to M(K) with the
kernel HG = 1. Since G = 〈A,B〉 and the left and right translations
are of the form LxH(yH) = (xH) ∗ (yH) = f(x)yH and RxH(yH) =
(yH) ∗ (xH) = f(y)g(x)H = g(x)f(y)H = g(x)yH where f(x) ∈ A and
g(x) ∈ B, we conclude that the image of the permutation representation is
the whole M(K). Therefore G is isomorphic to M(K).

When we combine Theorems 4.5 and 5.1, we immediately have

Theorem 5.2. Let Q be a loop. If I(Q) is a �nite cyclic group, then
I(Q) = 1 and Q is an abelian group.

From the previous result we see that a nontrivial �nite cyclic group can
never be in the role of I(Q). On the other hand, there are �nite abelian
groups which are isomorphic to inner mapping groups of loops. Thus we
pose

Problem 1. Classify those �nite abelian groups which are (are not) iso-
morphic to inner mapping groups of loops.

6. Centrally nilpotent loops
The centre Z(Q) of a loop Q consists of all elements a, which satisfy the
equations (ax)y = a(xy), (xa)y = x(ay), (xy)a = x(ya) and ax = xa for
all x, y ∈ Q. Thus a ∈ Z(Q) if and only if U(a) = a for every U ∈ I(Q).
Clearly, Z(Q) is an abelian group and normal in Q. The following well-
known result was �rst proved by Albert [1].
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Lemma 6.1. We have Z(Q) ∼= Z(M(Q)).

Proof. Let T ∈ Z(M(Q)). Thus LxT (e) = TLx(e) and it follows that
xT (e) = T (x) for every x ∈ Q. We see that T = RT (e). If U ∈ I(Q),
then UT (e) = TU(e) = T (e) and so T (e) ∈ Z(Q). We conclude that
Z(M(Q)) = {Rc | c ∈ Z(Q)}.

If we put Z0 = 1, Z1 = Z(Q) and Zi/Zi−1 = Z(Q/Zi−1), then we
obtain a series of normal subloops of Q. If Zn−1 is a proper subloop of Q
and Zn = Q, then Q is centrally nilpotent of class n.

Now the mapping f : I(Q) → I(Q/Z(Q)) de�ned by f(P )(xZ(Q)) =
P (x)Z(Q) is a surjective homomorphism and

Ker(f) = {P ∈ I(Q) | P (x)Z(Q) = xZ(Q) for every x ∈ Q}.
We thus get

Lemma 6.2. If K = {P ∈ I(Q) | P (x) ∈ xZ(Q) for every x ∈ Q}, then
K is a normal subgroup of I(Q) and I(Q/Z(Q)) ∼= I(Q)/K.

We combine the preceding lemma with Theorem 3.2.

Theorem 6.3. Let Q be a �nite loop and I(Q) an abelian group of prime
power order. Then Q is centrally nilpotent.

Proof. By Theorem 3.2, Z(M(Q)) > 1 and thus Z(Q) > 1, by Lemma
6.1. If K is as in Lemma 6.2, we have I(Q/Z(Q)) ∼= I(Q)/K. Again,
Z(Q/Z(Q)) > 1. We continue like this and it follows that Q is centrally
nilpotent.

Remark 6.4. The result of Theorem 6.3 also holds if I(Q) is abelian with-
out any restrictions on the order of I(Q) (for the details see [11] and [15]).

In the light of Theorem 6.3 is quite natural to pose the following problem.

Problem 2. Assume that Q is a �nite loop and I(Q) is an abelian p-group
whose structure is known. What can we say about the nilpotency class of a
loop Q?

We now recall a nilpotency criterion given by Bruck [3]. First write
I0 = I(Q) and Ii = NM(Q)(Ii−1) for each i ≥ 1.

Theorem 6.5. A necessary and su�cient condition that Q be centrally
nilpotent of class n is that In = M(Q) but In−1 6= M(Q).
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If Q is centrally nilpotent of class ≤ 2, then NM(Q)(I(Q)) = I(Q) ×
Z(M(Q)) is normal in M(Q). It follows that I(Q)′ is normal in M(Q),
hence I(Q)′ = 1 and I(Q) is an abelian group.

The results given in Theorems 4.8 and 4.9 can now easily be interpreted
in loop theory.

Theorem 6.6. If Q is a �nite loop and I(Q) ∼= Cp × Cp or I(Q) ∼= Cp ×
Cp × Cp, then Q is centrally nilpotent of class 2.

One is tempted to think that if I(Q) is an elementary abelian p-group,
then Q is centrally nilpotent of class 2. However, in a recent article Csörg®
[4] has constructed an example of a �nite group G of order 213 such that
G has an elementary abelian subgroup H of order 26 with H-connected
transversals A and B, G = 〈A,B〉 and G′ 6≤ NG(H). These conditions
naturally imply the existence of a loop Q of order 27 with elementary abelian
I(Q) of order 26 and with nilpotency class greater than two.

Remark 6.7. Drápal and Vojt¥chovský [9] have also constructed examples
of loops Q with I(Q) an abelian 2-group and Q centrally nilpotent of class
3 by means of a special group modi�cation. It is interesting to note that in
the case of a left conjugacy closed loop Q, it is centrally nilpotent of class
2 if and only if its inner mapping group is a nontrivial abelian group. This
result is due to Csörg® and Drápal [6]. Finally, Drápal and Kinyon [8] have
constructed a Buchsteiner loop of order 128 whose inner mapping group is
abelian and nilpotency class is three.

We shall put an end to this article with the following

Problem 3. Let Q be a loop such that I(Q) is an abelian p-group. Is it
possible that the nilpotency class of Q is greater than three?
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Four lectures on quasigroup representations

Jonathan D. H. Smith

Abstract

These are notes for lectures in the Workshops Loops '07 series, held at the Czech Agri-
cultural University, Prague, 13 August � 17 August, 2007. The initial lecture covers
elementary topics and examples of quasigroups. The following lectures then introduce
the three main branches of quasigroup representation theory: characters, permutation
representations, and modules.

1. Quasigroups
1.1. Basic de�nitions.
1.1.1. Combinatorial quasigroups. A (combinatorial) quasigroup Q or (Q, ·)
is a set Q equipped with a binary operation of multiplication

Q×Q → Q; (x, y) 7→ xy (1.1)

denoted by · or simple juxtaposition of the two arguments, in which speci-
�cation of any two of x, y, z in the equation x · y = z determines the third
uniquely.
1.1.2. Equational quasigroups. An (equational) quasigroup, written as Q or
(Q, ·, /, \), is a set Q equipped with three binary operations of multiplica-
tion, right division / and left division \, satisfying the identities:

(IL) y\(y · x) = x ; (IR) x = (x · y)/y ;
(SL) y · (y\x) = x ; (SR) x = (x/y) · y .

Note the left-right symmetry of these identities.
2000 Mathematics Subject Classi�cation: 20N05
Keywords: quasigroup, loop, multiplication group, centrality, character, association
scheme, permutation representation, permutation group, transfomation group, split
extension, module, group in category, combinatorial di�erentiation
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1.1.3. Quasigroups. Suppressing the divisions, each equational quasigroup is
a combinatorial quasigroup. For example, the unique solution y to x · y = z
is x\z. Conversely, each combinatorial quasigroup is equational: de�ne x\z
as the unique solution y to x · y = z, and so on. We speak simply of
quasigroups.

A subset P of a quasigroup (Q, ·) is a subquasigroup of Q if P is closed
under the multiplication and the divisions. If Q1 and Q2 are quasigroups,
then their (direct) product is the product set Q1 ×Q2 equipped with com-
ponentwise multiplication and divisions.
1.1.4. Homomorphisms and homotopies. A map

f : (Q1, ·, /, \) → (Q2, ·, /, \)
between quasigroups is a homomorphism if

xf · yf = (x · y)f

for all x, y in Q1. It is an isomorphism if it is bijective. We then say that
Q1 and Q2 are isomorphic, notation Q1

∼= Q2.
In quasigroup theory, the usual algebraic notion of homomorphism is

often too strong. A triple of maps

(f, g, h) : (Q1, ·, /, \) → (Q2, ·, /, \)
between quasigroups is a homotopy if

xf · yg = (x · y)h (1.2)

for all x, y in Q1. The triple is an isotopy if the maps f, g, h are bijective.
We then say that Q1 and Q2 are isotopic, notation Q1 ∼ Q2. (The concept
of isotopy is often too weak. The right concept seems to be �central isotopy,�
as described in �1.5.5. Compare [5, ��4.2�3].)
1.1.5. Exercises.

1. If f : Q1 → Q2 is a homomorphism between quasigroups, show
xf/yf = (x/y)f and xf\yf = (x\y)f for all x, y in Q1.

2. Show that a function f : Q1 → Q2 between quasigroups is a homo-
morphism if and only if its graph

{(x1, x2) ∈ Q1 ×Q2 | x1f = x2}
is a subquasigroup of the product Q1 ×Q2.
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3. Show that isotopy is an equivalence relation.

4. Show that, if one of the three components f , g, h of a homotopy is
bijective, then (f, g, h) is an isotopy.

5. Show that isotopic groups are isomorphic.

1.2. Basic examples.
1.2.1. Groups. Each group is a quasigroup, with x/y = xy−1 and x\y =
x−1y. The multiplication satis�es the associative law (although the divi-
sions do not). Conversely, with the exception of the empty quasigroup, each
associative quasigroup is a group. A quasigroup is abelian if it is commu-
tative and associative, so is either empty or an abelian group.
1.2.2. Subtraction. If (A, +) is an additive (abelian) group, then the set A
forms a quasigroup (A,−) under the nonassociative operation of subtrac-
tion. This operation is more fundamental than the associative operation of
addition. For example, the integer 1 generates all integers using subtrac-
tion, since 0 = 1− 1, −n = 0−n, m + n = m− (−n). But 1 only generates
the positive integers using addition.
1.2.3. Isotopes. If Q2 is a quasigroup, and the maps f, g, h : Q1 → Q2

are bijections, then there is a unique quasigroup structure on Q1 so that
(f, g, h) forms an isotopy. Using (1.2), we have x · y = (xf · yg)h−1 for
elements x, y in Q1. For example, if Q1 = Q2 = R, with Q2 as the additive
group (R, +, 0) of the real numbers, and the bijective maps f, g, h : R→ R
are the respective scalar multiplications by the invertible elements 1/2, 1/2,
and 1, then the multiplication

x · y =
x + y

2
is the operation of taking arithmetic means.
1.2.4. Latin squares. A Latin square, such as that displayed on the left side
of Figure 1, is an n × n square containing n copies of each of n symbols,
arranged in such a way that no symbol is repeated in any row or column.
The body of the multiplication table of a (�nite) quasigroup is a Latin
square, while each Latin square may be bordered to yield the multiplication
table of a quasigroup. For example, labelling the rows and columns of the
Latin square on the left side of Figure 1 by 1, . . . , 6 in order yields the
multiplication table of a quasigroup Q with 3 · 2 = 1, etc., as displayed on
the right side of Figure 1.
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1 3 2 5 6 4
3 2 1 6 4 5
2 1 3 4 5 6
4 5 6 1 2 3
5 6 4 2 3 1
6 4 5 3 1 2

Q 1 2 3 4 5 6
1 1 3 2 5 6 4
2 3 2 1 6 4 5
3 2 1 3 4 5 6
4 4 5 6 1 2 3
5 5 6 4 2 3 1
6 6 4 5 3 1 2

Figure 1: A Latin square yields a multiplication table.

1.2.5. Exercises.

1. De�ne a multiplication operation ◦ on the additive group Z/3Z of inte-
gers modulo 3 by x◦y = −x−y. Set up the body of the multiplication
table of (Z/3Z, ◦) as a Latin square.

2. Show that the quasigroups (Z/3Z,−), (Z/3Z,+), and the quasigroup
(Z/3Z, ◦) of Exercise (1) are all isotopic.

3. Verify the nonassociativity of the quasigroup Q whose multiplication
table appears in Figure 1.

1.3. Steiner systems.

1.3.1. Steiner triple systems. Steiner systems o�er a rich source of quasi-
groups. A Steiner triple system (S,B) is a �nite set S together with a set B
of blocks, 3-element subsets of S with the property that each pair of distinct
elements of S is contained in exactly one block.
1.3.2. Projective spaces over GF(2). Suppose that S is the projective space
PG(d, 2) of dimension d over the 2-element �eld GF(2). As a set, S consists
of the nonzero elements of the (d + 1)-dimensional vector space GF(2)d+1.
The lines in the projective space are the intersection with S of 2-dimensional
linear subspaces of GF(2)d+1. Taking B to be the set of lines yields a Steiner
triple system (S,B) which is also described as PG(d, 2). The points of S
are speci�ed by their coordinate vectors in GF(2)d+1, which in turn may be
interpreted as length d+1 binary expansions of numbers from 1 to 2d+1−1.
In the 2-dimensional case, illustrated in Figure 2, one obtains

B = {246, 145, 347, 123, 257, 167, 356}
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on writing each 3-element line {a, b, c} in the abbreviated form abc. Note
the curved �line� 356 in the �gure.
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Figure 2: The projective space PG(2, 2).

Suppose that S is the projective space PG(d, 2) of dimension d over the
2-element �eld GF(2). As a set, S consists of the nonzero elements of the
(d+1)-dimensional vector space GF(2)d+1. The lines in the projective space
are the intersection with S of 2-dimensional linear subspaces of GF(2)d+1.
Taking B to be the set of lines yields a Steiner triple system (S,B) which is
also described as PG(d, 2). The points of S are speci�ed by their coordinate
vectors in GF(2)d+1, which in turn may be interpreted as length d + 1
binary expansions of numbers from 1 to 2d+1 − 1. In the 2-dimensional
case, illustrated in Figure 2, one obtains

B = {246, 145, 347, 123, 257, 167, 356}

on writing each 3-element line {a, b, c} in the abbreviated form abc. Note
the curved �line� 356 in the �gure.
1.3.2. A�ne spaces over GF(3). Suppose that S is the a�ne space AG(d, 3)
of dimension d over the 3-element �eld GF(3). As a set, S is the vector
space GF(3)d. The lines in the a�ne geometry are the cosets L + v of 1-
dimensional linear subspaces L of GF(3)d, with v as a vector from GF(3)d.
Taking B to be the set of lines again yields a Steiner triple system (S,B),
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which is also described as AG(d, 3). The points of S may be represented
by Cartesian coordinates, which in turn may be interpreted as length d
ternary expansions of numbers from 0 to 3d− 1. In the 2-dimensional case,
one obtains

B = {012, 036, 048, 057, 138, 147, 156, 237, 246, 258, 345, 678}

on writing each 3-element line {a, b, c} in the abbreviated form abc.
1.3.4. Totally symmetric quasigroups. A Steiner triple system (S,B) yields
a quasigroup (S, ·) on de�ning x ·y = z whenever x = y = z or {x, y, z} ∈ B.
Such a quasigroup is idempotent, satisfying the identity

x · x = x . (1.3)

It also possesses the property of total symmetry expressed by the identities

x · y = x/y = x\y. (1.4)

Conversely, each idempotent, totally symmetric quasigroup (S, ·) yields a
Steiner triple system on de�ning

B =
{{x, y, x · y} ∣∣ x 6= y ∈ S

}
.

It is convenient to identify each Steiner triple system (S,B) with the corre-
sponding idempotent, totally symmetric quasigroup (S, ·).
1.3.5. Exercises.

1. Construct the multiplication table for the idempotent, totally sym-
metric quasigroup PG(2, 2).

2. Describe the quasigroup of Exercise 1.2.5 (1) as a Steiner triple system.

3. Show that for positive integers m and n, the totally symmetric quasi-
groups AG(m + n, 3) and AG(m, 3)× AG(n, 3) are isomorphic.

1.4. Multiplication groups.
1.4.1. Multiplications. Let p be an element of a subquasigroup P of a
quasigroup (Q, ·). The (relative) left multiplication LQ(p) or L(p) by p in
Q is the map

L(p) : Q → Q; x 7→ p · x .
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Note that L(p) is a permutation (bijective self-map) of Q. Indeed, the
identity (IL) gives the injectivity of L(p), while the identity (SL) gives the
surjectivity. Similarly, the (relative) right multiplication RQ(p) or R(p) by
p in Q is the map

R(p) : Q → Q; x 7→ x · p .

1.4.2. Multiplication groups. Let P be a subquasigroup of a quasigroup Q.
Let Q! be the group of all permutations of the set Q. The (relative) left
multiplication group of P in Q is the subgroup

LMltQP = 〈LQ(p) | p ∈ P 〉Q!

of Q! generated by all the relative left multiplications L(p) by elements p
of P . The (relative) right multiplication group

RMltQP = 〈RQ(p) | p ∈ P 〉Q!

is de�ned similarly. The (relative) multiplication group of P in Q is the
subgroup

MltQP = 〈LQ(p), RQ(p) | p ∈ P 〉Q!

generated by both the left and right multiplications from P . Note that P is
invariant under MltQP . Finally, de�ne the (combinatorial) multiplication
group MltQ of Q as the relative multiplication group of Q in itself. (The
adjective �combinatorial� distinguishes from the groups of �4.2.2.)
1.4.3. Multiplication groups of groups. Suppose that the quasigroup Q is a
group (compare �1.2.1), with centre Z(Q). The combinatorial multiplica-
tion group G of Q is given by the exact sequence

1 → Z(Q) ∆−→ Q×Q
T−→ G → 1 (1.5)

of groups with ∆ : z 7→ (z, z) and T : (x, y) 7→ L(x)−1R(y). If the group Q
is abelian, then the right multiplication map

R : Q → G; q 7→ R(q)

is a group isomorphism.
1.4.4. Multiplication groups as permutation groups. Suppose that G is a
relative multiplication group of a quasigroup Q. For elements x and y of
Q, de�ne

ρ(x, y) = R(x\x)−1R(x\y) (1.6)
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in G. Note that ρ(x, x) = 1 for x in Q. The action of G on Q is transitive:
given elements x and y of Q, we have

xρ(x, y) = xR(x\x)−1R(x\y) = xR(x\y) = x(x\y) = y

since xR(x\x) = x(x\x) = x. Consider the stabiliser

Gx = {g ∈ G | xg = x}

of each element x in Q. The stabilisers are all conjugate in G, indeed

(Gx)ρ(x,y) = Gxρ(x,y) = Gy

for x and y in Q.
1.4.5. Exercises.

1. Verify that ∆ and T in (1.5) are group homomorphisms.

2. Verify the exactness of the sequence (1.5) � at each of the three
interior nodes, the image of the arrow coming in is the group kernel
of the arrow going out.

3. Let G be the combinatorial multiplication group of a group Q with
identity element e. Show that the stabiliser Ge is the inner automor-
phism group InnQ of Q.

4. For an integer n > 1, show that the dihedral group Dn of degree n
is the multiplication group of the quasigroup (Z/nZ,−) of integers
modulo n under subtraction.

5. Let e be an element of a subquasigroup P of a quasigroup Q. Let
G be the relative multiplication group of P in Q, and let Ge be the
stabiliser of e in G. Using the notation (1.6), show that G decomposes
as the disjoint union

G =
⋃

x∈P

Geρ(e, x) .

6. Let e be an element of a quasigroup Q with combinatorial multipli-
cation group G. Show that Q is an abelian group if and only if the
stabiliser Ge is a normal subgroup of G [7, III Prop.2.5.3].
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1.5. Centrality.
1.5.1. Congruences. If f : Q1 → Q2 is a quasigroup homomorphism, con-
sider the kernel relation ker f of f , de�ned by

(x, y) ∈ ker f ⇔ xf = yf .

This is a congruence (relation) on Q1, an equivalence relation which, as
a subset of Q1 × Q1, is a subquasigroup of Q1 × Q1. Conversely, given a
congruence relation V on a quasigroup Q, the natural projection

natV : Q → QV ; x 7→ xV ,

mapping x in Q to its equivalence class xV = {y ∈ Q | (x, y) ∈ V } in
the set QV = {xV | x ∈ Q} of all equivalence classes, is a quasigroup
homomorphism.
1.5.2. Uniformity of congruences. Let V be a congruence on a quasigroup Q.
Then for elements x and y of Q, the map ρ(x, y) : xV → yV is a well-de�ned
bijection. To see that it is well de�ned, consider an element x′ of xV . Then

(y, x′ρ(x, y)) =
(
xρ(x, y), x′ρ(x, y)

)
=

(
(x, x′)

/
(x\x, x\x)

) · (x\y, x\y)

is an element of V , since V is both a re�exive relation and a subquasigroup
of Q2. Summarizing, a quasigroup congruence is determined by any one of
its congruence classes.
1.5.3. Normal subquasigroups. A subquasigroup P of a quasigroup Q is said
to be a normal subquasigroup of Q, written P / Q, if there is a congruence
V on Q having P as a single congruence class. By the uniformity (�1.5.2),
the congruence V is uniquely determined by P . Write Q/P for the quotient
QV . Note that a normal subgroup N of a group Q is a class of the kernel
congruence of the natural projection Q → Q/N ; x 7→ Nx.
1.5.4. Central congruences. For a quasigroup Q, the diagonal

Q̂ = {(x, x) ∈ Q2 | x ∈ Q}

is a subquasigroup of Q2. The diagonal is a subquasigroup of each congru-
ence V on Q, since V is re�exive. The congruence V is said to be central
if Q̂ / V . Each central congruence on Q is a subcongruence of a maximal
central congruence, the centre congruence ζ(Q) of Q. For a group Q, the
centre Z(Q) is the ζ(Q)-class of the identity element. A quasigroup Q is
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said to be central if ζ(Q) = Q2. The class of central quasigroups is denoted
by Z. Central groups are precisely the abelian groups.
1.5.5. Central isotopy. For a quasigroup Q, suppose that the diagonal Q̂ is
a congruence class of a congruence W on ζ(Q). A quasigroup P is centrally
isotopic to Q, written P ' Q, if there is a bijection t : P → Q, a so-called
central shift, and a pair (q, q′) of elements of Q such that

(q, q′) W
(
(x · y)t, xt · yt

)
(1.7)

for all x, y in P . In particular, it follows that the triple
(
t, t, tρ(q, q′)

)
is

an isotopy � Exercise 1.5.6 (4). Central isotopy is an equivalence relation,
and centrally isotopic quasigroups have similar multiplication group actions
(so in particular, their multiplication groups are isomorphic). A central
quasigroup Q is centrally isotopic to the central quasigroup Q2/Q̂. Note
that the quotient Q2/Q̂ has the class Q̂ as an idempotent element.
1.5.6. Exercises.

1. Show that a group Q is abelian if and only if Q̂ / Q2.

2. Let (A, +, 0) be an abelian group. For automorphisms R and L of
(A, +, 0), de�ne x · y = xR + yL . Show that (A, ·) is a central quasi-
group with 0 as an idempotent element. (In fact, each central quasi-
group with an idempotent element is obtained in this way [1, Th.
III.5.2], [6, �3.5].)

3. For the quasigroup (A, ·) of Exercise (2), show that Mlt(A, ·) is the
split extension of the abelian group (A,+, 0) by the subgroup 〈R, L〉
of the automorphism group Aut(A, +, 0) generated by the automor-
phisms R and L.

4. Let a quasigroup P be centrally isotopic to a quasigroup Q. Use (1.7)
to deduce that

(
t, t, tρ(q, q′)

)
: P → Q is an isotopy.

5. Amongst the quasigroups of Exercise 1.2.5 (2), determine which pairs
are centrally isotopic.

2. Characters
2.1. The Bose-Mesner algebra.

2.1.1. Conjugacy classes. Let Q be a quasigroup, with multiplication group
G. Recall that the action of G on Q is transitive, with a single orbit Q
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(�1.4.4). The group G acts on Q×Q with the diagonal action

(q1, q2)g = (q1g, q2g)

for q1, q2 in Q and g in G. There are several orbits. In the general theory of
transitive group actions, these orbits are described as orbitals. Here, they
are de�ned as the (quasigroup) conjugacy classes. Since G acts transitively
on Q, one orbital is the diagonal Q̂ = C1, the relation {(q1, q2) | q1 = q2}
of equality on Q. The complement of Q̂ = C1 in Q2 is the diversity relation
{(q1, q2) | q1 6= q2}. If the diversity relation forms a single orbital, then Q
is described as a rank 2 quasigroup. For a general �nite quasigroup Q of
order n, there is a �nite set Γ or

Γ(Q) = {Q̂ = C1, C2, . . . , Cs} (2.1)

of conjugacy classes, known as the conjugacy class partition of Q2. The
integer s is known as the rank of the quasigroup Q. For 1 6 i 6 s, the
cardinality of the i-th conjugacy class is a multiple |Ci| = nni of n. The
factor ni, known as the valency of Ci, is the cardinality of Ci(x) := {q |
(x, q) ∈ Ci} for each x in Q � Exercise 2.1.5 (1). Note that n1 = 1 and
n1 + · · ·+ ns = n.
2.1.2. Incidence matrices. Suppose that Q is a �nite quasigroup, with a
positive order n. Then the elements of Q may be used to index the rows
and columns of each n×n matrix (with entries from the �eld C of complex
numbers). For a relation R on Q, the incidence matrix of R is the n × n
matrix having an entry of 1 in the row labelled q1 and column labelled q2

whenever (q1, q2) ∈ R. The other entries of the incidence matrix of R are
zero. Thus the incidence matrix of the universal relation Q×Q is the n×n
matrix J or Jn, all of whose entries are 1. The incidence matrix of the
equality relation Q̂ = C1 is the n×n identity matrix I or In. The incidence
matrix of the diversity relation is Jn − In. If the incidence matrix of a
relation R is A, then the incidence matrix of the converse relation

R−1 = {(q1, q2) | (q2, q1) ∈ R}
is the (conjugate) transpose A∗ of A.
2.1.3. The Bose-Mesner algebra. Let Q be a quasigroup of positive �nite or-
der n, with conjugacy class partition (2.1). The converse of each conjugacy
class Ci is a conjugacy class Ci∗ . The respective incidence matrices

In = A1, A2, . . . , As (2.2)
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of the quasigroup conjugacy classes are the adjacency matrices. Note that
A∗i = Ai∗ (for 1 6 i 6 s) and

s∑

i=1

Ai = Jn .

The adjacency matrices (2.2) generate a subalgebra of the complex algebra
Cn

n of all complex n×n matrices. This algebra is known as the Bose-Mesner
algebra. If the multiplication group of Q is G, then the Bose-Mesner algebra
is also known as the centraliser ring (or Vertauschungsring) V (G,Q) of G
on Q.
2.1.4. Primitive idempotents. The Bose-Mesner algebra V (G, Q) of a �nite
quasigroup turns out to be just the s-dimensional C-linear span of the set
(2.2) of adjacency matrices, and moreover, V (G,Q) is a commutative sub-
algebra of the complex matrix algebra [6, Th. 6.1]. Thus there are structure
constants ck

ij for 1 6 i, j, k 6 s with

AiAj =
s∑

k=1

ck
ijAk

and ck
ij = ck

ji. Simultaneous diagonalisation of the set (2.2) of mutually
commuting matrices shows that the vector space V (G,Q) has a basis

1
n

Jn = E1, E2, . . . , Es (2.3)

of mutually orthogonal primitive idempotent matrices, satisfying

EiEj = δijEi and
s∑

i=1

Ei = In .

Thus the Wedderburn decomposition of V (G,Q) as a direct sum of matrix
rings is

V (G,Q) ∼= V (G,Q)E1 ⊕ · · · ⊕ V (C, Q)Es
∼= C⊕ · · · ⊕ C .

The matrices (2.3) are the projections onto the common eigenspaces of the
adjacency matrices (2.2). They are also uniquely determined as the set of
atoms of the �nite Boolean algebra of idempotent elements of V (G,Q). For
1 6 i 6 s, the traces fi of the matrices Ei are the multiplicities. Note that
f1 = 1 and f1 + · · ·+ fs = n.
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2.1.5. Exercises.
1. Let Ci be a conjugacy class of a �nite quasigroup of order n. For

elements x, y of Q, show that ρ(x, y) : Ci(x) → Ci(y) is a bijection.
2. Let Q be a group with identity element e. Show that

{e} = C1(e), C2(e), . . . , Cs(e)

are the usual group conjugacy classes � see Exercise 1.4.5 (3).
3. If Q is a group with identity element e, show that

Ci∗(e) = {x−1 | x ∈ Ci(e)} .

4. Show that a �nite, nonempty quasigroup is abelian if and only if all
the valencies are 1.

5. Show that, up to isomorphism, the additive group (Z/2Z, +, 0) is the
only �nite rank 2 group. (HNN-extensions of countable torsion-free
groups yield in�nite rank 2 groups [2].)

6. Let Q be the additive group (Z/3Z, +, 0) of integers modulo 3. Show
that the adjacency matrices are

A1 =




1 0 0
0 1 0
0 0 1


 , A2 =




0 1 0
0 0 1
1 0 0


 , A3 =




0 0 1
1 0 0
0 1 0


 ,

and the primitive idempotents are

E1 =
1
3




1 1 1
1 1 1
1 1 1


 , E2 =

1
3




1 ω ω2

ω2 1 ω
ω ω2 1


 , E3 =

1
3




1 ω2 ω
ω 1 ω2

ω2 ω 1




with ω = exp(2πi/3) as a primitive cube root of unity.

2.2. The character table.
2.1.1. Change of basis. For a quasigroup Q of �nite order n, with multi-
plication group G, the Bose-Mesner algebra V (G,Q) has two bases: the
adjacency matrices (2.2), and the primitive idempotents (2.3). Each matrix
from one basis is expressed uniquely as a linear combination of the matrices
from the other:
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Ai =
s∑

j=1
ξijEj , Ei =

s∑
j=1

ηijAj .

The coe�cients in these linear combinations form mutually inverse s × s
matrices

Ξ = [ξij ] and H = [ηij ] . (2.4)

2.2.2. Character tables. The character table of Q is the s× s matrix Ψ(Q)
or Ψ = [ψij ] with entries given as the normalised versions

ψij =
√

fi

nj
ξji = n√

fi
ηij

of the entries of the change-of-basis matrices (2.4). This normalisation is
used in the theory of �nite groups. With a di�erent normalisation, the
unitary character table of Q is the s × s matrix Υ(Q) or Υ = [υij ] with
entries given as

υij =

√
fi

nnj
ξji =

√
nnj

fi
ηij

in terms of the entries of the change-of-basis matrices (2.4). The so-called
orthogonality relations satis�ed by the character tables Ψ and Υ are best
summarised by saying that the unitary character table Υ is a unitary s× s
matrix: Υ∗Υ = Is � Exercise 2.2.5 (1).

2.2.3. Duality. In order to keep track of all the notation, see Table 1,

adjacency matrix Ai primitive idempotent Ei

valency ni multiplicity fi

n1 = 1 f1 = 1

n1 + · · ·+ ns = n f1 + · · ·+ fs = n

A1 = In E1 = 1
nJn

∑s
i=1 Ai = Jn

∑s
i=1 Ei = In

Ai ◦Aj = δijAi Ei · Ej = δijEi

Ai =
∑s

j=1 ξijEj Ei =
∑s

j=1 ηijAj

Table 1: Duality.
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illustrating the duality present. For two matrices B = [bij ] and C = [cij ] of
the same shape, recall the Hadamard product B ◦ C = [bijcij ].

2.2.4. Class functions. For a quasigroup Q with multiplication group G, a
complex-valued function θ : Q×Q → C is a class function if θ(q1g, q2g) =
θ(q1, q2) for all qi in Q and g in G. In other words, θ is constant on each
conjugacy class. The class functions form a complex vector space CCl(Q)
under componentwise addition and scalar multiplication. If Q has �nite
order n, then an inner product 〈 | 〉 is de�ned on CCl(Q) by

〈θ|ϕ〉 =
1
n2

∑

(x,y)∈Q2

θ(x, y)ϕ(y, x) .

For 1 6 i 6 s, the i-th row ψi = [ψi1, . . . , ψis] of the character table Ψ(Q)
determines a class function ψi with ψi(x, y) = ψij for (x, y) ∈ Cj , known as
a basic character of Q. As a result of the orthogonality relations, and the
choice of the normalisation for Ψ, the basic characters ψ1, . . . , ψs form an
orthonormal basis for the space CCl(Q) of class functions. In particular, the
principal character ψ1 is the zeta function ζ : Q2 → C taking the constant
value 1 � Exercise 2.2.5 (3).

2.2.5. Exercises.

1. For a �nite nonempty quasigroup Q, use ΞH = Is to prove that Υ(Q)
is a unitary matrix.

2. For a quasigroup Q of positive order n, show that fi = nηi1 for 1 6
i 6 s. Conclude that ψi1 =

√
fi for 1 6 i 6 s.

3. For a quasigroup Q of positive order n, show that ξ1j = 1 for 1 6 j 6
s. Conclude that ψ1j = 1 for 1 6 j 6 s.

4. Compute the character table and the unitary character table for the
additive group (Z/3Z, +, 0) of integers modulo 3 � compare Exercise
2.1.5 (6).

5. Show that a �nite nonempty quasigroup is abelian if and only if all
the multiplicities are 1.
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2.3. Examples and computations.
2.3.1. Rank 2 quasigroups. Let Q be a rank 2 quasigroup of �nite order n.
Now f2 = n2 = n− 1, so Ψ(Q) has the form

[
1 1

(n− 1)1/2 ?

]
.

Using the orthogonality relations, this is completed to

Ψ(Q) =
[

1 1
(n− 1)1/2 −(n− 1)−1/2

]
.

In particular � compare Exercise 2.1.5 (5),

Ψ(Z/2Z, +) =
[
1 1
1 −1

]
. (2.5)

Almost all �nite quasigroups are rank 2 quasigroups [7, Cor.6.5].
2.3.2. Groups. Suppose that Q is a �nite group of order n, with identity
element e. By Exercise 2.1.5 (2), the valencies ni are the orders of the group
conjugacy classes Ci(e) for 1 6 i 6 s. Consider the complex vector space
CQ spanned by Q. Extending the multiplication of Q by linearity (including
the distributive law) yields CQ as the (complex ) group algebra of Q. The
right and left multiplications of Q act as endomorphisms of the vector space
CQ, making CQ a faithful module over CG. The centraliser ring V (G,Q), as
the ring EndCGCQ of endomorphisms of the vector space CQ that commute
with the action of G, is the centre Z(CQ) of the group algebra. Choose a set
{V1, V2, . . . Vs} of mutually nonisomorphic representatives for the ordinary
irreducible Q-modules, with V1 trivial. Suppose dimVi = di for 1 6 i 6 s.
The group algebra CQ decomposes as

CQ ∼= End CQCQ
∼= End CQV1 ⊕ EndCQ(d2V2)⊕ · · · ⊕ EndCQ(dsVs)
∼= C⊕Matd2(C)⊕Matds(C) ,

a direct sum of matrix rings. (The latter isomorphism holds by Schur's
Lemma). The centre decomposes as

V (G, Q) = Z(CQ) ∼= Cπ1 ⊕ Cπ2 ⊕ · · · ⊕ Cπs



Four lectures on quasigroup representations 125

with the primitive idempotent πi or Ei as the idempotent projection from
CQ onto the d2

i -dimensional subspace Matdi(C). Thus the multiplicities are
fi = d2

i for 1 6 i 6 s. It turns out that for 1 6 i, j 6 s, the basic character
value ψij is the value of the irreducible group character χi (the character of
the irreducible module Vi) at elements of the group conjugacy class Cj(e).
The character table of the symmetric group S3 of degree 3 is

Ψ =




1 1 1
1 1 −1
2 −1 0


 . (2.6)

As usual for groups, the entries
√

fi in the �rst column, namely the dimen-
sions di of the irreducible modules, are integral.

2.3.3. Subtraction modulo 4. By Exercise 1.4.5 (4), the multiplication group
G of the quasigroup Q = (Z/4Z,−) of the integers modulo 4 under subtrac-
tion is the 8-element dihedral group D4 of degree 4. The adjacency matrices
are

A1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , A2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , A3 =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 ,

corresponding to the three respective relations of equality, diametric oppo-
sition, and adjacency in the square graph of Figure 3.
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Figure 3: The square.
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The centraliser ring V (G,Q) is generated as a commutative complex
algebra by the element X = A3, since A2

3 = 2A1 + 2A2, so A2 = 1
2X2 − 1

(and, of course, A1 = 1). Now A3
3 = 4A3, so

V (G,Q) ∼= C[X]
/〈X3 − 4X〉

∼= C[X]
/〈X − 2〉 ⊕ C[X]

/〈X + 2〉 ⊕ C[X]
/〈X〉 .

The isomorphism is obtained by the First Isomorphism Theorem for C-
algebras from the homomorphism

C[X] → C3; f(X) 7→ (
f(2), f(−2), f(0)

)
.

Thus in the isomorphism V (G,Q) ∼= C3,

A1 = 1 7→ (1, 1, 1) ;

A2 =
X2

2
− 1 7→ (1, 1,−1) ;

A3 = X 7→ (2,−2, 0) .

The idempotent E1 = J/4 = (A1 + A2 + A3)/4, mapping to (1, 0, 0), is
projection onto the �rst component corresponding to f(2). Let E2 project
to the second component f(−2), and E3 to the third f(0). Then

Ξ =




1 1 1
1 1 −1
2 −2 0


 and H =




1/4 1/4 1/4
1/4 1/4 −1/4
1/2 −1/2 0


 ,

so f1 = f2 = 1 and f3 = 2 � Exercise 2.2.5 (2). Finally

Ψ =




1 1 1
1 1 −1√
2 −√2 0


 (2.7)

� compare with the character table (2.6) of the symmetric group S3.
2.3.4. Exercises.

1. Compute the character table of the Klein 4-group.

2. Compute the character table of the quasigroup Q = (Z/5Z,−) of in-
tegers modulo 5 under subtraction. In your answer, use trigonometric
functions rather than radicals as much as you can.
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3. The character table (2.7) has the irrational entry
√

2 in the �rst col-
umn. Does the character table of a �nite, nonassociative quasigroup
always have at least one irrational entry somewhere in the �rst col-
umn?

4. (a) Using Exercise 1.5.6 (2) or otherwise, construct a central rank 2
quasigroup of order 5.

(b) From the existence of non-central rank 2 quasigroups of order 5,
conclude that the character table of a �nite quasigroup Q cannot
determine whether Q is central or not.

(c) Since Ψ(Q2) does determine the centrality of Q [7, Cor. 7.2],
conclude that Ψ(Q) does not determine Ψ(Q2).

5. (a) Give an example of two isotopic quasigroups with distinct char-
acter tables.

(b) Show that centrally isotopic quasigroups have the same character
table.

3. Permutation representations
3.1. Cosets.

3.1.1. Symmetry. Consider a group Q, for example the group D4 of sym-
metries of the square as illustrated in Figure 3. Let P be a point stabiliser,
a subgroup of Q. In the square example, take the subgroup P to be the
stabiliser {(0), (1 3)} of the vertex 0. The subgroup P determines a (group)
homogeneous space, the set

P\Q = {Px | x ∈ Q}
of cosets. The cosets (including P itself) are considered as points of the
homogeneous space. The group Q acts on the homogeneous space P\Q by

RP\Q(q) : P\Q → P\Q; Px 7→ Pxq (3.1)

for q in Q. Now in Figure 3, for a vertex v of the square, choose an element
x of Q taking 0 to v. Each vertex v of the square corresponds to the coset
Px, the set of permutations taking 0 to 0x = v. The action of Q on the
square is then similar (in the technical sense!) to the action of Q on the
homogeneous space P\Q.
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3.1.2 Cosets. As described in �3.1.1., symmetry reduces to the action of
a group on a homogeneous space, the set of cosets of a subgroup. Our
goal is to examine symmetry within the theory of quasigroups. Let P be a
subquasigroup of a quasigroup Q. The (right) cosets of P in Q are de�ned
as the orbits of the relative left multiplication group LMltQP (compare
�1.4.2) in its action on Q. The (quasigroup) homogeneous space P\Q is
de�ned as the set of cosets of P in Q. For a �nite quasigroup Q, the type
of a homogeneous space P\Q is the partition of |P\Q| given by the sizes of
the orbits of the relative left multiplication group of P in Q. The type of a
homogeneous space P\Q, or the space itself, is said to be uniform if all the
parts of the partition are equal.

If P is a subgroup of a group Q, then the right cosets

Px = {px | p ∈ P}

in the group sense are exactly the right cosets xLMltQP in the quasigroup
sense. Now in the group case, the maps (3.1) are bijections between the
various right cosets. Thus for a �nite group Q, every homogeneous space
P\Q is uniform.
3.1.3. The quasigroup case. To see what can happen in the quasigroup case,
it is helpful to consider an example: the quasigroup Q whose multiplication
table is displayed in Figure 1. Let P be the singleton subquasigroup {1}.
Note that LMltQP is the cyclic subgroup of Q! generated by (23)(456).
Thus

P\Q =
{{1}, {2, 3}, {4, 5, 6}} . (3.2)

The space (3.2) is certainly not uniform, its type being the partition 3 +
2 + 1 of 6. On the other hand, the homogeneous space determined by the
subquasigroup N = {1, 2, 3} is

N\Q =
{{1, 2, 3}, {4, 5, 6}} .

This space is uniform, of type 3 + 3.
In a general quasigroup Q, the regular homogeneous space is de�ned as

∅\Q. The relative left multiplication group of the empty subquasigroup
just consists of the identity permutation, so the regular space is the set{{x} ∣∣ x ∈ Q

}
of singletons, isomorphic to (and often identi�ed with) the

set Q itself. If Q is a group or a loop (a quasigroup with identity element
1 satisfying 1 · x = x = x · 1), the regular space may also be realised as the
homogeneous space {1}\Q.
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3.1.4. Exercises.

1. Let Q be the quasigroup of integers modulo 4 under subtraction. For
each subquasigroup P of Q, determine the homogeneous space P\Q
and its type.

2. Let P be a subgroup of a group Q. Show that the orbits of the relative
right multiplication group RMltQP of P in Q are the left cosets of P .

3. Let P be a subgroup of a group Q. Show that the orbits of the relative
multiplication group MltQP of P in Q are the double cosets PxP of
P .

4. Let e be an element of a quasigroup Q with multiplication group G,
and let Ge be the stabiliser of e in G. Show that the double cosets
GexGe of Ge in G are in 1�1 correspondence with the quasigroup
conjugacy classes of Q.

3.2. Action on homogeneous spaces.
3.2.1. Markov matrices. If q is an element of a group Q with subgroup P ,
the action of q on the homogeneous space P\Q is given by the map RP\Q(q)
of (3.1). Under right multiplication by q in Q, each element of a given coset
Px is taken to the same coset Pxq.

A+
P RQ(5) AP
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Figure 4: The action RP\Q(5).
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Now consider the quasigroup Q whose multiplication table is given in
Figure 1, with the subquasigroup P = {1}. The homogeneous space P\Q
is displayed in (3.2), and again on each side of Figure 4. Here the respective
cosets are labelled as a = {1}, a′ = {2, 3}, and b = {4, 5, 6}. Under the
action of right multiplication by the element 5 of Q, the elements of the
coset b are not all sent to the same coset. The elements 4 and 5 go to a′,
while 6 goes to a. The action is described by the Markov matrix

a a′ b

a
a′

b




0 0 1
0 0 1
1
3

2
3 0


 = RP\Q(5) (3.3)

indexed by the points of the homogeneous space. Under the uniform prob-
ability distribution on Q, and hence on each coset, an element of the coset
b is sent to a with probability 1

3 , and to a′ with probability 2
3 . The Markov

chain speci�ed by the Markov matrix RP\Q(5) has the homogeneous space
P\Q = {a, a′, b} as its state space. Each element of the state space on
the left of Figure 4 has a uniform chance of transitioning along each of the
arrows leading from it. After that, its path through Q and back to the state
space P\Q is uniquely speci�ed.
3.2.2. Moore-Penrose inverses. The analytical speci�cation of Markov ma-
trices such as (3.3) relies on the concept of the (Moore-)Penrose inverse or
pseudoinverse A+ of a (not necessarily square) complex matrix A. This is
the unique matrix A+ satisfying the equations

AA+A = A ,

A+AA+ = A+,

(A+A)∗ = A+A ,

(AA+)∗ = AA+

in which ∗ denotes the conjugate transpose [4].
For a subquasigroup P of a �nite, nonempty quasigroup Q, let A or AP

denote the incidence matrix for the homogeneous space P\Q of Q. This
is a rectangular matrix, with rows indexed by Q and columns indexed by
P\Q. An entry indexed by an element q of Q and a coset X in P\Q is 1
if q lies in X, and 0 otherwise. The pseudoinverse A+ or A+

P has its rows
indexed by P\Q and columns indexed by Q. An entry indexed by a coset X
in P\Q and an element q of Q is |X|−1 if q lies in X, and 0 otherwise. For
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the singleton subquasigroup P = {1} of the quasigroup Q from Figure 1,
these matrices become

AP =




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1




and A+
P =




1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1
3

1
3

1
3


 . (3.4)

� compare the right and left sides of Figure 4.
3.2.3. Action matrices. If q is an element of a �nite quasigroup Q with
subquasigroup P , the action of q on the homogeneous space P\Q is given
by the Markov matrix

RP\Q(q) = A+
P RQ(q)AP (3.5)

obtained using the incidence matrix AP described in �3.2.2. The matrix
(3.5) is called the action matrix of the element q on the homogeneous space
P\Q. Note how Figure 4 illustrates the composition of the action matrix
RP\Q(5) in the example under consideration. If Q is a �nite group, then
(3.5) recovers the permutation matrix describing the action (3.1) of q on
P\Q � Exercise 3.2.4 (4).
3.2.4. Exercises.

1. Con�rm that the matrices in (3.4) are mutual pseudoinverses.
2. Let P be a subquasigroup of positive order m in a quasigroup Q of

�nite order n. Suppose |P\Q| = 2. Show that for an element q of Q,

RP\Q(q) =





[
1 0
0 1

]
if q ∈ P ;

[
0 1
m

n−m
n−2m
n−m

]
otherwise.

3. (a) If (Q, ·) is a quasigroup, show that (Q, \) is a quasigroup.
(b) Show that the multiplication table of a �nite quasigroup (Q, ·)

is the formal sum
∑

q∈Q qRS(q) of action matrices of the regular
homogeneous space S of the quasigroup (Q, \).
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4. If q is an element of a �nite group Q with subgroup P , show that
(3.5) recovers the permutation matrix describing the action (3.1) of q
on P\Q.

4. Modules
4.1. Groups in categories.

4.1.1. Split extensions. If Q is a group, a Q-module M is an abelian group
(M, +, 0) with a group homomorphism

Q → Aut(M, +, 0); q 7→ (m 7→ mq)

from Q to the automorphism group of the abelian group (M, +, 0). Since
the composition of automorphisms is associative, this de�nition gives no
possibility of extension to general quasigroups. Instead, it will be recast in
more suitable form. Given a Q-module M , the split extension E = QnM
is the set Q×M equipped with the product

(q1,m1)(q2,m2) = (q1q2,m1q2 + m2) . (4.1)

The split extension comes equipped with the projection

p : E → Q; (q, m) 7→ q (4.2)

and the insertion ηQ or

η : Q → E; q 7→ (q, 0), (4.3)

both of which are group homomorphisms.
4.1.1. Slice categories. If Q is an object of a category C, an object in the
slice category (or �comma category�) C/Q is a C-morphism p : E → Q. For
example, the projection (4.2) from the split extension is an object in the
slice category Gp/Q of groups over Q, with Gp as the category of groups.
A morphism in a slice category C/Q between two objects p1 : E1 → Q and
p2 : E2 → Q is a C-morphism f : E1 → E2 for which the diagram

E1
f−−−−→ E2

p1

y
yp2

Q −−−−→
1Q

Q
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commutes. Such C/Q-morphisms are often just denoted simply by the C-
morphism f : E1 → E2. The identity morphism 1Q : Q → Q is the terminal
object of C/Q. If the category C has pullbacks, then the slice category
C/Q has �nite products. The product of two objects p1 : E1 → Q and
p2 : E2 → Q is the pullback

E1 ×Q E2
π2−−−−→ E2

π1

y
yp2

E1 −−−−→
p1

Q

(4.4)

with the composite morphism π1p1 = π2p2 to Q. Recall that for categories
of sets (possibly with algebraic structure), the pullback E1×Q E2 is realised
as {(e1, e2) ∈ E1×E2 | e1p1 = e2p2}, with the projections πi : E1×Q E2 →
Ei; (e1, e2) 7→ ei.
4.1.2. Abelian groups. The category Set of sets has all �nite products,
including the empty product as the terminal object T (the codomain of a
unique morphism from each object). An abelian group (A, +, 0) is an object
A of Set with an addition morphism + : A2 → A, a negation morphism
−1 : A → A, and a zero morphism 0 : A0 → A from the terminal object
T = A0, for which diagrams such as

A
(1,−1)−−−−→ A2

y
y+

A0 −−−−→
0

A

(4.5)

(expressing the identities for abelian groups, in this case a + (−a) = 0)
commute. An abelian group A in a category C with �nite products is an
object A of C with an addition morphism + : A2 → A, a negation morphism
−1 : A → A, and a zero morphism 0 : A0 → A from the terminal object
T = A0, for which the diagrams (4.5) commute.

If M is a module over a group Q, the projection p : E → Q (4.2) is an
abelian group in the slice category Gp/Q. The addition is

+ : E ×Q E → E;
(
(q,m1), (q, m2)

) 7→ (q, m1 + m2)

and the zero morphism is given by the group homomorphism η of (4.3),
determining the morphism
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Q
η−−−−→ E

1Q

y
yp

Q −−−−→
1Q

Q

(4.6)

from the terminal object 1Q : Q → Q of the slice category Gp/Q.
4.1.3. Modules. Given a module M over a group Q, the split extension
p : QnM → Q (4.2) is an abelian group in the slice category Gp/Q. For
q in Q, the conjugation action of the element qη on the normal subgroup
p−1{1} of QnM is given by

(q, 0)\(1,m)(q, 0) = (mq, 0), (4.7)

thereby re�ecting the action of Q on the module M .
Conversely, suppose that p : E → Q is an abelian group in the slice

category Gp/Q, with addition + : E ×Q E → E and zero morphism as in
(4.6). Let M denote the inverse image p−1{1} of the identity element 1 of
Q under p. For elements m1 and m2 of M , the pair (m1,m2) lies in the
pullback E ×Q E, and the image m1 + m2 of the pair (m1,m2) under the
addition again lies in M . In this way, the set M receives an abelian group
structure. In analogy with (4.7), each element q of Q acts on M by

q : m 7→ qη\mqη,

making M a right Q-module.
In summary, it is seen that modules over a group Q are equivalent to

abelian groups p : E → Q in the slice category Gp/Q of groups over Q.
It is this module concept which allows itself to be extended to arbitrary
quasigroups (�4.2.1).
4.1.5. Exercises.

1. Using the de�nition (4.1) of the product in the split extension, verify
the formula (4.7).

2. The group Z/3Z of integers modulo 3 acts as a nontrivial group of au-
tomorphisms of the Klein 4-group. The corresponding split extension
is a group of order 12. Can you recognise this group?

3. Produce a full set of commuting diagrams like (4.5) to de�ne abelian
groups (associativity, commutativity, etc.).
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4.2. Modules over quasigroups

4.2.1. Quasigroup modules. Let V be a variety of quasigroups, a class of
quasigroups closed under homomorphic images, subquasigroups, and prod-
ucts. Equivalently (by Birkho�'s Theorem [7, IV Th. 2.3.3]), V is the class
of all quasigroups satisfying a given set of identities. As examples, consider
the variety G of associative quasigroups (�1.2.1), the variety A of abelian
quasigroups, the variety Q of all quasigroups, or the variety STS of Steiner
triple systems � idempotent (1.3) and totally symmetric (1.4) quasigroups
(�1.3). The variety V may also be considered as a category. The class of
quasigroups is the object class of the category, while the morphisms are
the quasigroup homomorphisms between the quasigroups in the class. As a
category, V has all limits and colimits, in particular all pullbacks, products
and coproducts (free products) [7, IV �2.2].

For a quasigroup Q in V, a Q-module in the variety V is de�ned as an
abelian group p : E → Q in the slice category V/Q of V-quasigroups over
Q. If Q is a group, it is apparent from �4.1.4 that Q-modules in the variety
G are equivalent to Q-modules in the usual sense.

Given two Q-modules pi : Ei → Q in V (with i = 1, 2), a Q-module
homomorphism is a V/Q-morphism f : E1 → E2 that commutes with the
abelian group structures: 0f = 0, (−1)f = f(−1), and +f = (f ×Q f)+.
The Q-modules in V form a category Z⊗V/Q.

4.2.2. Universal multiplication groups.The de�nition of modules over a quasi-
group given in �4.2.1 is rather abstract. A direct description depends on
certain groups associated with a quasigroup Q in a variety V. Let Q[X]V
or Q[X] be the free product (coproduct) of Q in V with the free quasigroup
in V on a single generator X. The V-quasigroup Q[X] is analogous to a
ring of polynomials, and is characterised by a similar universal property: for
every quasigroup E in V that is the codomain of a V-morphism η : Q → E,
and for every element x of E, there is a unique quasigroup homomorphism
Q[X] → E restricting to η on the subquasigroup Q of Q[X], and mapping
the indeterminate X to x in E.

The universal multiplication group G̃ or U(Q,V) of Q in V is the relative
multiplication group of Q in Q[X]. If Q is a subquasigroup of a quasigroup
E in V, the relative multiplication group of Q in E is a quotient of G̃. In
particular, the combinatorial multiplication group G of Q is a quotient of
G̃. In this way G̃ acts on Q, and an element e of Q has its stabiliser in G̃,
the universal stabiliser G̃e.
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4.2.3. Examples of universal multiplication groups.

1. The universal multiplication group U(Q,Q) of a quasigroup Q in the
variety Q of all quasigroups is the free group on the set L(Q)+R(Q),
the disjoint union of two copies of the set Q.

2. The universal multiplication group U(Q,G) of a group Q in the va-
riety G of all associative quasigroups is the direct square Q × Q.
Compare with �1.4.4, where the combinatorial multiplication group
of Q is obtained from the direct square Q × Q by dividing out the
diagonal copy of the centre Z(Q).

3. For an abelian group Q in the variety A of all abelian quasigroups,
U(Q,A) ∼= Q � Exercise 4.2.6 (1).

4. The universal multiplication group U(Q,STS) of a Steiner triple sys-
tem Q in the variety STS of all Steiner triple systems is the free
product (in the variety of groups) of |Q| copies of the cyclic group of
order 2. It is also described as the set Q× of words in the alphabet Q
without adjacent letters repeated. Each letter q from Q corresponds
to R(q) in U(Q,STS). The product in the group is obtained from
concatenation of words followed by cancellation of adjacent pairs of
identical letters. For example, q1q2q3 ·q3q2 = q1. The identity element
is the empty word.

4.2.4. The Fundamental Theorem. Let Q be a quasigroup, considered in the
variety Q of all quasigroups. Let G̃ be the universal multiplication group
U(Q,Q) of Q in Q. Let e be an element of Q, with corresponding universal
stabiliser G̃e. The Fundamental Theorem of Quasigroup Representations
[6, Th. 10.1] states that modules over the quasigroup Q are equivalent to
modules over the group G̃e.

Suppose that p : E → Q is an abelian group in Q/Q. The inverse image
M = p−1{e} forms an abelian group under the restriction of the addition
morphism + : E×QE → E. The zero morphism 0 : Q → E embeds Q in E.
The relative multiplication group MltE(Q) is a quotient of G̃. Then G̃ acts
on E via this quotient. The action restricts to an action of the universal
stabilizer G̃e on M . This action consists of automorphisms of the abelian
group M . Thus the Q-module p : E → Q yields a G̃e-module M = p−1{e}.

Conversely, for a G̃e-module M , a corresponding abelian group in Q/Q
has to be constructed. For each element g of G̃ and q of Q, there is a unique
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element s(q, g) of G̃e such that

s(q, g)ρ(e, qg) = ρ(e, q)g (4.8)

� Exercise 1.4.5 (5). Note that

s(e, ge) = ge (4.9)

for ge in G̃e. Now consider the G̃-set E = M ×Q with action

(m, q)g =
(
ms(q, g), qg

)
. (4.10)

� compare Exercise 4.2.6 (2). De�ne local abelian group structures on E
by

(m1, q)− (m2, q) = (m1 −m2, q) (4.11)
for mi ∈ M and q ∈ Q. Let π : E → Q be projection onto the second
factor. Then a quasigroup structure is de�ned on E by





a · b = aR(bπ) + bL(aπ) ;
a/b = (a− bL(aπ/bπ))R(bπ)−1 ;
a\b = (b− aR(aπ\bπ))L(aπ)−1 .

(4.12)

With this structure, π : E → Q becomes an abelian group object in the
category Q/Q. Note that by (4.9), the G̃e-modules M and π−1{e} are
isomorphic.
4.2.5. Di�erential calculus. The Fundamental Theorem of Quasigroup Rep-
resentations provides a di�erentiation process applying to quasigroup words
and identities. Fix a quasigroup Q with element e and universal multiplica-
tion group G̃ = U(Q,Q) in the variety of all quasigroups. The category of
G̃e-modules is generated by the integral group algebra ZG̃e, considered as
a G̃e-module. Under the equivalence given by the Fundamental Theorem,
the corresponding object is the Q-module π : ZG̃e ×Q → Q. Using (4.12),
the action of a quasigroup word x1 . . . xnw on this object is given by

(m1, q1) . . . (mn, qn)w =
( n∑

h=1

mhρ(e, qh)
∂w

∂xh
ρ(e, w)−1, q1 . . . qnw

)
(4.13)

for certain elements
∂w

∂xh
=

∂w

∂xh
(q1, . . . , qn) (4.14)
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of ZG̃. Notational conventions similar to those of calculus are used. The
functions

∂w

∂xh
: Qn → ZG̃; (q1, . . . , qn) 7→ ∂w

∂xh
(q1, . . . , qn) (4.15)

for 1 6 h 6 n are known as the partial derivatives of the quasigroup word
x1 . . . xnw. They are computed inductively using the parsing of the word
x1 . . . xnw. For xw = x, (4.13) simply gives

∂x

∂x
= 1 . (4.16)

More generally, the derivatives of the projection x1 . . . xi . . . xnπi = xi are
given by

∂πi

∂xj
= δij .

For x1 . . . xkxk+1 . . . xk+lw = x1 . . . xku · xk+1 . . . xk+lv, (4.12) and (4.13)
give

(m1, q1) . . . (mk+l, qk+l)w =
( k+l∑

h=1

mhρ(e, qh)
∂w

∂xh
ρ(qh, w)−1, w

)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1, u

)
·
( k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1, v

)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1, u

)
R(qk+1 . . . qk+lv)

+
( k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1, qk+1 . . . qk+lv

)
L(q1 . . . qku)

=
( k∑

i=1

miρ(e, qi)
∂u

∂xi
ρ(e, u)−1s

(
u,R(v)

)
+

k+l∑

j=k+1

mjρ(e, qj)
∂v

∂xj
ρ(e, v)−1s

(
v, L(u)

)
, w

)
,

leading to the Product Rules

∂w

∂xi
=

∂u

∂xi
R(xk+1 . . . xk+lv)
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for 1 6 i 6 k and
∂w

∂xj
=

∂v

∂xj
L(x1 . . . xku)

for k < j 6 k + l. These may be summarized as

∂(u · v)
∂xi

=
∂u

∂xi
R(v) ; (4.17)

∂(u · v)
∂xj

=
∂v

∂xj
L(u) . (4.18)

Note that if there are repeated arguments in the word w, say qi = qj with
i 6 k < j, then ∂w/∂xi will include the sum of ∂(u · v)/∂xi as given by
(4.17) and ∂(u · v)/∂xj as given by (4.18).
4.2.6. Exercises.

1. Let Q be an abelian group, considered in the variety A of abelian
quasigroups.

(a) Show that Q[X]A = Q⊕ Z.
(b) Show that U(Q,A) ∼= Q.

2. In the context of �4.2.4, let M be a G̃e-module.

(a) Show that s(q, g)s(qg, h) = s(q, gh) for q ∈ Q and g, h ∈ G̃.
(b) Show that (4.10) does give a group action: for m in M , q in Q

and g1, g2 in G̃, show (m, q)(g1g2) =
(
(m, q)g1

)
g2 .

3. In the context of �4.2.4, let M be a G̃e-module. Show that (4.12)
de�nes a quasigroup structure on E = M ×Q.

4. Show that
∂x2

∂x
= R(x) + L(x) .

5. For nonassociative powers xl and xr, show that

∂(xl · xr)
∂x

=
∂xl

∂x
R(x) +

∂xr

∂x
L(x) .

Conclude that nonassociative powers of x are indexed by their deriva-
tives, which are noncommutative polynomials in R(x) and L(x) �
the �index ψ-polynomials� of [3].
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6. Derive the Right Quotient Rules

∂(u/v)
∂xi

=
∂u

∂xi
R(v)−1 ;

∂(u/v)
∂xj

= − ∂v

∂xj
L(u/v)R(v)−1 ;

and the Left Quotient Rules

∂(u\v)
∂xi

= − ∂u

∂xi
R(u\v)L(u)−1 ;

∂(u\v)
∂xj

=
∂v

∂xj
L(u)−1 .

7. Let Q be a group, with identity element e. Take G̃ to be the universal
multiplication group U(Q,G) of Q in the variety G of associative
quasigroups. Show that Q-modules are equivalent to G̃e-modules.
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Quasigroups and Related Systems 15 (2007), 141− 168Gyrogroups, the grouplike loopsin the servie of hyperboli geometry andEinstein's speial theory of relativityAbraham A. UngarAbstratIn this era of an inreased interest in loop theory, the Einstein veloity addition law hasfresh resonane. One of the most fasinating aspets of reent work in Einstein's speialtheory of relativity is the emergene of speial grouplike loops. The speial grouplikeloops, known as gyroommutative gyrogroups, have thrust the Einstein veloity additionlaw, whih previously has operated mostly in the shadows, into the spotlight. We will �ndthat Einstein (Möbius) addition is a gyroommutative gyrogroup operation that formsthe setting for the Beltrami-Klein (Poinaré) ball model of hyperboli geometry just asthe ommon vetor addition is a ommutative group operation that forms the settingfor the standard model of Eulidean geometry. The resulting analogies to whih thegrouplike loops give rise lead us to new results in (i) hyperboli geometry; (ii) relativistiphysis; and (iii) quantum information and omputation.
1. IntrodutionThe author's two reent books with the ambitious titles, �Analyti hyper-boli geometry: Mathematial foundations and appliations� [56℄, and �Be-yond the Einstein addition law and its gyrosopi Thomas preession: Thetheory of gyrogroups and gyrovetor spaes� [53, 66℄, raise expetations fornovel appliations of speial grouplike loops in hyperboli geometry and inrelativisti physis. Indeed, these books lead their readers to see what some2000 Mathematis Subjet Classi�ation: 20N05, 51P05, 83A05Keywords: Grouplike loops, gyrogroups, gyrovetor spaes, hyperboli geometry,speial relativity.



142 A. A. Ungarspeial grouplike loops have to o�er, and thereby give them a taste of loopsin the servie of the hyperboli geometry of Bolyai and Lobahevsky andthe speial relativity theory of Einstein.Seemingly strutureless, Einstein's relativisti veloity addition is nei-ther ommutative nor assoiative. Einstein's failure to reognize and ad-vane the rih, grouplike loop struture [52℄ that regulates his relativis-ti veloity addition law ontributed to the elipse of his veloity additionlaw of relativistially admissible 3-veloities, reating a void that ould be�lled only with the Lorentz transformation of 4-veloities, along with itsMinkowski's geometry.Minkowski haraterized his spaetime geometry as evidene that pre-established harmony between pure mathematis and applied physis doesexist [42℄. Subsequently, the study of speial relativity followed the lineslaid down by Minkowski, in whih the role of Einstein veloity addition andits interpretation in the hyperboli geometry of Bolyai and Lobahevskyare ignored [5℄. The tension reated by the mathematiian Minkowski intothe speialized realm of theoretial physis, as well as Minkowski's strategyto overome disiplinary obstales to the aeptane of his reformulation ofEinstein's speial relativity is skillfully desribed by Sott Walter in [64℄.Aording to Leo Corry [11℄, Einstein onsidered Minkowski's reformu-lation of his theory in terms of four-dimensional spaetime to be no morethan �super�uous erudition�. Admitting that, unlike his seemingly stru-tureless relativisti veloity addition law, the Lorentz transformation is anelegant group operation, Einstein is quoted as saying:�If you are out to desribe truth, leave elegane to the tailor.�Albert Einstein (1879 � 1955)One might, therefore, suppose that there is a prie to pay in math-ematial elegane and regularity when replaing ordinary vetor additionapproah to Eulidean geometry with Einstein vetor addition approah tohyperboli geometry. But, this is not the ase sine grouplike loops, alledgyroommutative gyrogroups, ome to the resue. It turns out that Einsteinaddition of vetors with magnitudes < c is a gyroommutative gyrogroupoperation and, as suh, it possesses a rih nonassoiative algebrai andgeometri struture. The best way to introdue the gyroommutative gy-rogroup notion that regulates the algebra of Einstein's relativisti veloityaddition law is o�ered by Möbius transformations of the dis [29℄. The sub-sequent transition from Möbius addition, whih regulates the Poinaré ball



Gyrogroups, the grouplike loops 143model of hyperboli geometry, Fig. 1, to Einstein addition, whih regulatesthe Beltrami-Klein ball model of hyperboli geometry, Fig. 6, expressedin gyrolanguage, will then turn out to be remarkably simple and elegant[56, 57℄.Evidently, the grouplike loops that we naturally all gyroommutativegyrogroups, along with their extension to gyrovetor spaes, form a new toolfor the twenty-�rst entury exploration of lassial hyperboli geometry andits use in physis.2. Möbius transformations of the disMöbius transformations of the dis D,
D = {z ∈ C : |z| < 1} (1)of the omplex plane C o�er an elegant way to introdue the grouplike loopsthat we all gyrogroups. More than 150 years have passed sine AugustFerdinand Möbius �rst studied the transformations that now bear his name[35℄. Yet, the rih struture he thereby exposed is still far from beingexhaustedAhlfors' book [1℄, Conformal Invariants: Topis in Geometri FuntionTheory, begins with a presentation of the Möbius self-transformation of theomplex open unit dis D,

z 7→ eiθ a + z

1 + az
= eiθ(a⊕Mz) (2)

a, z∈D, θ∈R, where a is the omplex onjugate of a [14, p. 211℄ [19, p. 185℄[36, pp. 177 � 178℄. Suggestively, the polar deomposition (2) of Möbiustransformation of the dis gives rise to Möbius addition, ⊕M ,
a⊕Mz =

a + z

1 + az
. (3)Naturally, Möbius subtration, ⊖M , is given by a⊖Mz = a⊕M(−z), so that

z⊖Mz = 0 and ⊖Mz = 0⊖Mz = 0⊕M(−z) = −z. Remarkably, Möbiusaddition possesses the automorphi inverse property
⊖M(a⊕Mb) = ⊖Ma⊖Mb (4)and the left anellation law
⊖Ma⊕M(a⊕Mz) = z (5)



144 A. A. Ungarfor all a, b, z∈D, [56, 53℄.Möbius addition gives rise to the Möbius dis groupoid (D,⊕M), reallingthat a groupoid (G,⊕) is a nonempty set, G, with a binary operation, ⊕,and that an automorphism of a groupoid (G,⊕) is a bijetive self map fof G that respets its binary operation ⊕, that is, f(a⊕b) = f(a)⊕f(b).The set of all automorphisms of a groupoid (G,⊕) forms a group, denoted
Aut(G,⊕).Möbius addition ⊕M in the dis is neither ommutative nor assoiative.To measure the extent to whih Möbius addition deviates from assoiativitywe de�ne the gyrator

gyr : D× D→ Aut(D,⊕M) (6)by the equation
gyr[a, b]z = ⊖M(a⊕Mb)⊕M{a⊕M(b⊕Mz)} (7)for all a, b, z∈D.The automorphisms

gyr[a, b] ∈ Aut(D,⊕M) (8)of D, a, b∈D, alled gyrations of D, have an important hyperboli geometriinterpretation [63℄. Thus, the gyrator in (6) generates the gyrations in(8). In order to emphasize that gyrations of D are also automorphisms of
(D,⊕M), as we will see below, they are also alled gyroautomorphisms.Clearly, in the speial ase when the binary operation ⊕M in (7) is asso-iative, gyr[a, b] redues to the trivial automorphism, gyr[a, b]z = z for all
z∈D. Hene, indeed, the self map gyr[a, b] of the dis D measures the extentto whih Möbius addition ⊕M in the dis D deviates from assoiativity.One an readily simplify (7) in terms of (3), obtaining

gyr[a, b]z =
1 + ab

1 + ab
z (9)

a, b, z∈D, so that the gyrations
gyr[a, b] =

1 + ab

1 + ab
=

a⊕Mb

b⊕Ma
(10)are unimodular omplex numbers. As suh, gyrations represent rotationsof the dis D about its enter, as shown in (9).



Gyrogroups, the grouplike loops 145Gyrations are invertible. The inverse, gyr−1[a, b] = (gyr[a, b])−1, of agyration gyr[a, b] is the gyration gyr[b, a],
gyr−1[a, b] = gyr[b, a] (11)Moreover, gyrations respet Möbius addition in the dis,

gyr[a, b](c⊕Md) = gyr[a, b]c⊕Mgyr[a, b]d (12)for all a, b, c, d∈D, so that gyrations of the dis are automorphisms of thedis, as antiipated in (8).Identity (10) an be written as
a⊕Mb = gyr[a, b](b⊕Ma) (13)thus giving rise to the gyroommutative law of Möbius addition. Further-more, Identity (7) an be manipulated, by mean of the left anellation law(5), into the identity

a⊕M(b⊕Mz) = (a⊕Mb)⊕Mgyr[a, b]z (14)thus giving rise to the left gyroassoiative law of Möbius addition.The gyroommutative law, (13), and the left gyroassoiative law, (14),of Möbius addition in the dis reveal the grouplike struture of Möbiusgroupoid (D,⊕M), that we naturally all a gyroommutative gyrogroup. Tak-ing the key features of Möbius groupoid (D,⊕M) as axioms, and guided byanalogies with group theory, we thus obtain the following de�nitions ofgyrogroups and gyroommutative gyrogroups.De�nition 1. (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if itsbinary operation satis�es the following axioms. In G there is at least oneelement, 0, alled a left identity, satisfying(G1) 0⊕a = afor all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) suh that foreah a ∈ G there is an element ⊖a ∈ G, alled a left inverse of a, satisfying(G2) ⊖a⊕a = 0 .Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ Gsuh that the binary operation obeys the left gyroassoiative law(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .



146 A. A. UngarThe map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism ofthe groupoid (G,⊕), that is,(G4) gyr[a, b] ∈ Aut(G,⊕) ,and the automorphism gyr[a, b] of G is alled the gyroautomorphism, or thegyration, of G generated by a, b ∈ G. The operator gyr : G×G→ Aut(G,⊕)is alled the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generatedby any a, b ∈ G possesses the left loop property(G5) gyr[a, b] = gyr[a⊕b, b] .The gyrogroup axioms (G1) � (G5) in De�nition 1 are lassi�ed intothree lasses:
(1) The �rst pair of axioms, (G1) and (G2), is a reminisent of the groupaxioms.
(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs ofaxioms in (1) and (2).The loop property (G5) turns out to be equivalent to the gyration-freeidentity

x⊕(y⊕(x⊕z)) = (x⊕(y⊕x))⊕z (15)whih loop theorists reognize as the left Bol identity [46, 47℄.As in group theory, we use the notation a⊖b = a⊕(⊖b) in gyrogrouptheory as well.In full analogy with groups, gyrogroups are lassi�ed into gyroommu-tative and non-gyroommutative gyrogroups.De�nition 2. (Gyroommutative gyrogroups). A gyrogroup (G,⊕)is gyroommutative if its binary operation obeys the gyroommutative law(G6) a⊕ b = gyr[a, b](b⊕ a)for all a, b ∈ G.Some �rst gyrogroup theorems, some of whih are analogous to grouptheorems, are presented in [56, Chap. 2℄. Thus, in partiular, the gyrogroupleft identity and left inverse are idential with their right ounterparts, andthe resulting identity and inverse are unique, as in group theory. Further-more, the left gyroassoiative law and the left loop property are assoiatedwith orresponding right ounterparts.



Gyrogroups, the grouplike loops 147A gyrogroup operation ⊕ omes with a dual operation, the ooperation(or, o-operation, for larity) ⊞ [56, Def. 2.7℄, given by the equation
a ⊞ b = a⊕gyr[a,⊖b]b (16)so that
a ⊟ b = a⊖gyr[a, b]b (17)for all a, b ∈ G, where we de�ne a ⊟ b = a ⊞ (⊖b). The gyrogroup oop-eration shares with its assoiated gyrogroup operation remarkable dualitysymmetries as, for instane [56, Theorem 2.10℄,

a ⊞ b = a⊕gyr[a,⊖b]b

a⊕b = a ⊞ gyr[a, b]b
(18)Interestingly, by [56, Theorem 3.4℄, a gyrogroup ooperation is ommu-tative if and only if its orresponding gyrogroup is gyroommutative.The gyroautomorphisms have their own rih struture as we see, forinstane, from the gyroautomorphism inversion property

(gyr[a, b])−1 = gyr[b, a] (19)from the loop property (left and right)
gyr[a, b] = gyr[a⊕b, b]

gyr[a, b] = gyr[a, b⊕a]
(20)and from the elegant nested gyroautomorphism identity

gyr[a, b] = gyr[⊖gyr[a, b]b, a] (21)for all a, b ∈ G in any gyrogroup G = (G,⊕). More gyroautomorphismidentities and important gyrogroup theorems, along with their appliations,are found in [53, 56, 62℄ and in [6, 13, 25, 26, 30, 45, 46, 47, 63℄.Thus, without losing the �avor of the group struture we have gener-alized it into the gyrogroup struture to suit the needs of Möbius additionin the dis and, more generally, in the open ball of any real inner produtspae [61℄, as we will show in Se. 3. Gyrogroups abound in group theory,as shown in [15℄ and [16℄, where �nite and in�nite gyrogroups, both gyro-ommutative and non-gyroommutative, are studied. Plenty of gyrogrouptheorems are found in [53, 56, 62℄. Furthermore, any gyrogroup an be ex-tended into a group, alled a gyrosemidiret produt group [56, Se. 2.6℄ [28℄.



148 A. A. UngarHene, the generalization of groups into gyrogroups bears an intriguing re-semblane to the generalization of the rational numbers into the real ones.The beginner is initially surprised to disover an irrational number, like √2,but soon later he is likely to realize that there are more irrational numbersthan rational ones. Similarly, the gyrogroup struture of Möbius additioninitially omes as a surprise. But, interested explorers may soon realize thatin some sense there are more non-group gyrogroups than groups.In our �gyrolanguage�, as the reader has notied, we attah the pre-�x �gyro� to a lassial term to mean the analogous term in our study ofgrouplike loops. The pre�x stems from Thomas gyration, whih is the math-ematial abstration of the relativisti e�et known as Thomas preession,explained in [53℄. Indeed, gyrolanguage turns out to be the language weneed to artiulate novel analogies that the lassial and the modern in thispaper and in [53, 56, 62℄ share.3. Möbius addition in the ballIf we identify omplex numbers of the omplex plane C with vetors of theEulidean plane R
2 in the usual way,
C ∋ u = u1 + iu2 = (u1, u2) = u ∈ R

2 (22)then the inner produt and the norm in R
2 are given by the equations

ūv + uv̄ = 2u·v

|u| = ‖u‖
(23)These, in turn, enable us to translate Möbius addition from the omplexopen unit dis D into the open unit dis R

2
s=1 = {v∈R

2 : ‖v‖ < s = 1} of
R

2 [29℄:
D ∋ u⊕Mv =

u + v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u + (1− |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u + (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2
= u⊕Mv ∈ R

2
s=1

(24)



Gyrogroups, the grouplike loops 149for all u, v ∈ D and all u,v ∈ R
2
s=1. The last equation in (24) is a vetorequation, so that its restrition to the ball of the Eulidean two-dimensionalspae R

2
s=1 is a mere artifat. As suh, it survives unimpaired in higherdimensions, suggesting the following de�nition of Möbius addition in theball of any real inner produt spae.De�nition 3. (Möbius addition in the ball). Let V be a real innerprodut spae [33℄, and let Vs be the s-ball of V,

Vs = {Vs ∈ V : ‖v‖ < s} (25)for any �xed s > 0. Möbius addition ⊕M in the ball Vs is a binary operationin Vs given by the equation
u⊕Mv =

(1 + 2
s2 u·v + 1

s2 ‖v‖2)u + (1− 1
s2 ‖u‖2)v

1 + 2
s2 u·v + 1

s4 ‖u‖2‖v‖2
(26)

u,v∈Vs, where · and ‖·‖ are the inner produt and norm that the ball Vsinherits from its spae V.Without loss of generality, one may selet s = 1 in De�nition 3. We,however, prefer to keep s as a free positive parameter in order to exhibitthe result that in the limit as s→ ∞, the ball Vs expands to the whole ofits real inner produt spae V, and Möbius addition ⊕M in the ball reduesto vetor addition in the spae. Remarkably, like the Möbius dis groupoid
(D,⊕M), also the Möbius ball groupoid (Vs,⊕M) forms a gyroommutativegyrogroup, alled a Möbius gyrogroup.Möbius addition in the ball Vs is known in the literature as a hyper-boli translation [2, 43℄. Following the disovery of the gyroommutativegyrogroup struture in 1988 [50℄, Möbius hyperboli translation in the ball
Vs now deserves the title �Möbius addition� in the ball Vs, in full analogywith the standard vetor addition in the spae V that ontains the ball.Möbius addition in the ball Vs satis�es the gamma identity

γu⊕Mv = γuγv

√

1 +
2

s2
u·v +

1

s4
‖u‖2‖v‖2 (27)for all u,v ∈ Vs, where γu is the gamma fator

γv =
1

√

1− ‖v‖
2

s2

(28)



150 A. A. Ungarin the s-ball Vs.Following (16), Möbius ooperation, also alled Möbius oaddition, inthe ball is ommutative, given by the equation
u ⊞M v =

γ2
uu + γ2

vv

γ2
u + γ2

v − 1
(29)for all u,v∈Vs. Note that v ⊞M 0 = v and v ⊟M v = 0, as expeted.4. Gyrogroups are loopsA loop is a groupoid (G,⊕) with an identity element, 0, suh that eah ofits two loop equations for the unknowns x and y,

a⊕x = b

y⊕a = b
(30)possesses a unique solution in G for any a, b ∈ G [39, 40℄. Any gyrogroup isa loop. Indeed, if (G,⊕) is a gyrogroup then the respetive unique solutionsof the gyrogroup loop equations (30) are [56, Se. 2.4℄

x = ⊖a⊕b

y = b ⊟ a
(31)The ogyrogroup (G, ⊞), assoiated with any gyrogroup (G,⊕), is also aloop. The unique solutions of its two loop equations

a ⊞ x = b

y ⊞ a = b
(32)are [56, Theorem 2.38℄

x = ⊖(⊖b⊕a)

y = b⊖a
(33)Note that, in general, the two loop equations in (32) are identiallythe same equation if and only if the gyrogroup ooperation ⊞ is ommu-tative. Hene, their solutions must be, in general, idential if and only ifthe gyrogroup ooperation ⊞ is ommutative. Indeed, a gyrogroup (G,⊕)possesses the gyroautomorphi inverse property, ⊖(a⊕b) = ⊖a⊖b, if and



Gyrogroups, the grouplike loops 151only if it is gyroommutative [56, Theorem 3.2℄. Hene, the two solutions,
x and y, in (33) are, in general, equal if and only if the gyrogroup (G,⊕)is gyroommutative. This result is ompatible with the result that a gy-rogroup is gyroommutative if and only if its ooperation ⊞ is ommutative[56, Theorem 3.4℄.The ogyrogroup is an important and interesting loop. Its algebraistruture is not grouplike, but it plays a ruial role in the study of the gy-roparallelogram law of Einstein's speial relativity theory and its underlyinghyperboli geometry, Figs. 4, 5 and 8.It follows from the solutions of the loop equations in (30) and (32) thatany gyrogroup (G,⊕) possesses the following anellation laws [56, Table2.1℄:

a⊕(⊖a⊕b) = b

(b ⊟ a)⊕a = b

a ⊟ (⊖b⊕a) = b

(b⊖a) ⊞ a = b

(34)The �rst (seond) anellation law in (34) is alled the left (right) an-ellation law. The last anellation law in (34) is alled the seond rightanellation law. The two right anellation laws in (34) form one of theduality symmetries that the gyrogroup operation and ooperation share,mentioned in the paragraph of (18). It is thus lear that in order to main-tain analogies between gyrogroups and groups, we need both the gyrogroupoperation and its assoiated gyrogroup ooperation.In the speial ase when a gyrogroup is gyroommutative, it is alsoknown as (i) aK-loop (a term oined by Ungar in [51℄; see also [27, pp. 1, 169-170℄); and (ii) a Bruk loop [27, pp. 168℄. A new term, (iii) �dyadi symset�,whih emerges from an interesting work of Lawson and Lim in [31℄, turnsout, aording to [31, Theorem 8.8℄, to be idential with a two-divisible,torsion-free, gyroommutative gyrogroup [56, p. 71℄.5. Möbius salar multipliation in the ballHaving developed the Möbius gyrogroup as a grouplike loop, we do not stopat the loop level. Enouraged by analogies gyrogroups share with groups,we now seek analogies with vetor spaes as well. Aordingly, we unoverthe salar multipliation, ⊗M , between a real number r ∈R and a vetor
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v∈Vs, that a Möbius gyrogroup (Vs,⊕M) admits, so that we an turn theMöbius gyrogroup into a Möbius gyrovetor spae (Vs,⊕M ,⊗M). For anynatural number n∈N we de�ne and alulate n⊗Mv := v⊕M . . . ⊕Mv (n-terms), obtaining a result in whih we formally replae n by a real number
r, suggesting the following de�nition of the Möbius salar multipliation.De�nition 4. (Möbius salar multipliation). Let (Vs,⊕M) be a Möbiusgyrogroup. Then its orresponding Möbius gyrovetor spae (Vs,⊕M ,⊗M)involves the Möbius salar multipliation r⊗Mv = v⊗Mr in Vs, given by theequation

r⊗Mv = s

(

1 +
‖v‖
s

)r

−
(

1− ‖v‖
s

)r

(

1 +
‖v‖
s

)r

+

(

1− ‖v‖
s

)r

v

‖v‖

= s tanh(r tanh−1 ‖v‖
s

)
v

‖v‖

(35)
where r∈R, v∈Vs, v 6= 0; and r⊗M0 = 0.Extending De�nition 4 by abstration, we obtain the abstrat gyrovetorspae, studied in [56, Chap. 6℄. As we go through the study of gyrovetorspaes, we see remarkable analogies with lassial results unfolding. Inpartiular, armed with the gyrovetor spae struture, we o�er a gyrovetorspae approah to the study of hyperboli geometry [56℄, whih is fullyanalogous to the ommon vetor spae approah to the study of Eulideangeometry [24℄. Our basi examples are presented in the sequel and shownin several �gures.6. Möbius gyroline and moreIn full analogy with straight lines in the standard vetor spae approah toEulidean geometry, let us onsider the gyroline equation in the ball Vs,

LAB := A⊕(⊖A⊕B)⊗t (36)
t∈R, A, B ∈ Vs, in a Möbius gyrovetor spae (Vs,⊕,⊗). For simpliity,we use in this setion the notation ⊕M = ⊕ and ⊗M = ⊗. The gyrosegment
AB is the part of the gyroline (36) that links the points A and B. Hene,it is given by (36) with 0 6 t 6 1, Fig. 1.
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a

b

ma,b

p

d⊖(a,p)⊕d⊖(p,b) = d⊖(a,b)

a⊕(⊖a⊕b)⊗t

0 ≤ t ≤ 1

Figure 1. The gyrosegment that links the two
pointsa andb in the Möbius gyrovector plane
(R2

s,⊕,⊗). p is a generic point betweena
andb, andma,b is the midpoint of the points
a andb.

a

b

mc
a,b

p

d⊟(a,p) ⊞ d⊟(p,b) = d⊟(a,b)

(b ⊟ a)⊗t⊕a

0 ≤ t ≤ 1

b ⊟ mc
ab

p ⊟ a

Figure 2. The cogyrosegment that links the
two pointsa andb in the Möbius gyrovector
plane(R2

s,⊕,⊗). p is a generic point cobe-
tweena andb andma,b is the comidpoint of
the pointsa andb.For any t∈R the point P (t) = A⊕(⊖A⊕B)⊗t lies on the gyroline LAB .Thinking of t as time, at time t = 0 the point P lies at P (0) = A and,owing to the left anellation law in (34), at time t = 1 the point P lies at

P (1) = B. Furthermore, the point P reahes the gyromidpoint MAB of thepoints A and B at time t = 1/2,
MAB = A⊕(⊖A⊕B)⊗1

2 = 1
2⊗(A ⊞ B) (37)[56, Se. 6.5℄. Here MAB is the unique gyromidpoint of the points A and

B in the gyrodistane sense, d(A, MAB ) = d(B, MAB ), the gyrodistanefuntion being d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖.In the speial ase when Vs = R
2
s, the gyroline LAB , shown in Fig. 1, isa irular ar that intersets the boundary of the s-dis R

2
s orthogonally. Astudy of the onnetion between gyrovetor spaes and di�erential geometry[56, Chap. 7℄ [57℄ reveals that this gyroline is the unique geodesi thatpasses through the points A and B in the Poinaré dis model of hyperboligeometry.The ogyroline equation in the ball Vs, similar to (36), is

Lc
AB := (B ⊟ A)⊗t⊕A (38)
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α

β

γ

a

b

c

A

B

C

a = ⊖C⊕B

b = ⊖C⊕A

c = ⊖B⊕A

a = ‖a‖, b = ‖b‖, c = ‖c‖

a2

s2 = cos α+cos(β+γ)
cos α+cos(β−γ)

b2

s2 = cos β+cos(α+γ)
cos α+cos(α−γ)

c2

s2 = cos γ+cos(α+β)
cos γ+cos(α−β)

cos γ = ⊖C⊕A
‖⊖C⊕A

· ⊖C⊕B
‖⊖C⊕B

δ = π − (α + β + γ) > 0

Figure 3. Möbius gyrotriangle and its standard notation and identities in a Möbius gyrovector
space(Vs,⊕,⊗). Remarkably, in the limit ass → ∞ the equations in the figure reduce to
their Euclidean counterparts. Thus, for instance, in that limit we havecos α + cos(β + γ) = 0
implying the Euclidean theorem according to which the triangle angle sum isπ, α+β +γ = π.

t∈R, A, B ∈ Vs, in a Möbius gyrovetor spae (Vs,⊕,⊗). The ogyroseg-ment AB is the part of the ogyroline (38) that links the points A and B.Hene, it is given by (38) with 0 6 t 6 1, Fig. 2.For any t∈R the point P (t) = (B ⊟ A)⊗t⊕A lies on the ogyroline Lc
ABin (38). Thinking of t as time, at time t = 0 the point P lies at P (0) = Aand, owing to the right anellation law in (34), at time t = 1 the point

P lies at P (1) = B. Furthermore, the point P reahes the ogyromidpoint
M c

AB of the points A and B at time t = 1/2,
M c

AB = (B ⊟ A)⊗1
2⊕A = 1

2⊗(A⊕B) (39)[56, Theorem 6.34℄. Here M c
AB is the unique ogyromidpoint of the points

A and B in the ogyrodistane sense, dc(A, M c
AB ) = dc(B, M c

AB ), the ogy-rodistane funtion being dc(A, B) = ‖⊖A ⊞ B‖ = ‖B ⊟ A‖.In the speial ase when Vs = R
2
s, the ogyroline Lc

AB , shown in Fig. 2,is a irular ar that intersets the boundary of the s-dis R
2
s diametrially.Let A, B, C∈G be any three non-gyroollinear points of a Möbius gy-rovetor spae G = (G,⊕,⊗). In Fig. 3 we see a gyrotriangle ABC whoseverties, A, B, and C, are linked by the gyrovetors a, b, and c; and whose
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A

B

C

D◮

◮
◮

The Gyroparallelogram Law

(⊖A⊕B) ⊞ (⊖A⊕C) = ⊖A⊕D

b ⊞ c = d

b = ⊖A⊕B

c = ⊖A⊕C

d = ⊖A⊕D
b

c

d

Figure 4. The Möbius gyroparallelogram
ABDC and its associated gyroparallelogram
addition law of gyrovectors in a M̈obius gy-
rovector space(Vs,⊕,⊗) is shown.

A

B

C

D◮

◮

◮

The Gyroparallelogram Law

(⊖B⊕A) ⊞ (⊖B⊕D) = ⊖B⊕C

a ⊞ d = c

a = ⊖B⊕A

c = ⊖B⊕C

d = ⊖B⊕D

a

c

d

Figure 5. As a second example, the same
Möbius gyroparallelogramABDC in Fig. 4
gives rise to a second gyroparallelogram addi-
tion of gyrovectors.side gyrolengths are a, b, and c, given by the equations

a = ⊖C⊕B, a = ‖a‖
b = ⊖C⊕A, b = ‖b‖
c = ⊖B⊕A, c = ‖c‖

(40)With the gyrodistane funtion d(A, B) = ‖⊖A⊕B‖ = ‖B⊖A‖, we havethe gyrotriangle inequality [56, Theorem 6.9℄ d(A, C) 6 d(A, B)⊕d(B, C),in full analogy with the Eulidean triangle inequality.A gyrovetor v = ⊖A⊕B in a Möbius gyrovetor plane (R2
s,⊕,⊗) andin a Möbius three-dimensional gyrovetor spae (R3

s,⊕,⊗) is representedgraphially by the direted gyrosegment AB from A to B as, for instane,in Figs. 4 � 5 and 8.Two gyrovetors, (i) ⊖A⊕B, from A to B, and (ii) ⊖A′⊕B′, from A′ to
B′, in a gyrovetor spae G = (G,⊕,⊗) are equivalent if

⊖A⊕B = ⊖A′⊕B′ (41)In the same way that vetors in Eulidean geometry are equivalenelasses of direted segments that add aording to the parallelogram law,



156 A. A. Ungargyrovetors in hyperboli geometry are equivalene lasses of direted gy-rosegments that add aording to the gyroparallelogram law. A gyroparal-lelogram, the hyperboli parallelogram, sounds like a ontradition in termssine parallelism in hyperboli geometry is denied. However, in full anal-ogy with Eulidean geometry, but with no referene to parallelism, thegyroparallelogram is de�ned as a hyperboli quadrilateral whose gyrodiag-onals interset at their gyromidpoints, as in Figs. 4 � 5. Indeed, any threenon-gyroollinear points A, B, C in a gyrovetor spae (G,⊕,⊗) form agyroparallelogram ABDC if and only if D satis�ed the gyroparallelogramondition D = (B ⊞ C)⊖A [56, Se. 6.7℄.An interesting ontrast between Eulidean and hyperboli geometry isobserved here. In Eulidean geometry vetor addition oinides with theparallelogram addition law. In ontrast, in hyperboli geometry gyrove-tor addition, given by Möbius addition, and the Möbius gyroparallelogramaddition law are distint.7. Einstein operations in the ballDe�nition 5. (Einstein addition in the ball). Let V be a real innerprodut spae and let Vs be the s-ball of V,
Vs = {v ∈ V : ‖v‖ < s} (42)where s > 0 is an arbitrarily �xed onstant (that represents in physis thevauum speed of light c). Einstein addition ⊕E is a binary operation in Vsgiven by the equation

u⊕Ev =
1

1 + u·v
s2

{

u +
1

γu

v +
1

s2

γu

1 + γu

(u·v)u

} (43)where γu is the gamma fator, (28), in Vs, and where · and ‖·‖ are the innerprodut and norm that the ball Vs inherits from its spae V.We may note that the Eulidean 3-vetor algebra was not so widelyknown in 1905 and, onsequently, was not used by Einstein. Einstein al-ulated in his founding paper [12℄ the behavior of the veloity omponentsparallel and orthogonal to the relative veloity between inertial systems,whih is as lose as one an get without vetors to the vetorial version(43).
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a, t = 0

b, t = 1

The Einstein Gyroline
through the points a and b

a⊕
E
(⊖

E
a⊕

E
b)⊗

E
t

−∞ < t <∞

Figure 6. The unique gyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.

a, t = 0

b, t = 1

b ⊟E a

The Cogyroline
through the points a and b

(b ⊟E a)⊗
E
t⊕

E
a

−∞ < t <∞

Figure 7. The unique cogyroline in an Ein-
stein gyrovector space(Vs,⊕E,⊗E) through
two given pointsa and b. The case of the
Einstein gyrovector plane, whenVs = R

2

s is
the real open unit disc, is shown graphically.Seemingly strutureless, Einstein veloity addition ould not play in Ein-stein's speial theory of relativity a entral role. Indeed, Borel's attemptto �repair� the seemingly �defetive� Einstein veloity addition in the yearsfollowing 1912 is desribed in [65, p. 117℄. Fortunately, however, there isno need to �repair� the Einstein veloity addition law sine, like Möbiusaddition in the ball, Einstein addition in the ball is a gyroommutative gy-rogroup operation, whih gives rise to the Einstein ball gyrogroups (Vs,⊕E)and gyrovetor spaes (Vs,⊕E ,⊗E), Figs. 6 � 7 [53, 8℄. Furthermore, Ein-stein's gyration turns out to be the Thomas preession of relativity physis[52℄, so that Thomas preession is a kinemati e�et rather than a dynamie�et as it is usually portrayed [58℄. A brief history of the disovery ofThomas preession is presented in [53, Se. 1.1℄.The gamma fator is related to Einstein addition by the gamma identity

γu⊕Ev = γuγv

(

1 +
u·v
s2

) (44)This gamma identity provided the histori link between Einstein's speialtheory of relativity and the hyperboli geometry of Bolyai and Lobahevsky,as explained in [60℄.Einstein salar multipliation in the ball Vs is idential with Möbiussalar multipliation, (35), in the ball Vs, r⊗Ev = r⊗Mv for all r∈R and
v∈Vs. Hene Einstein and Möbius salar multipliation are denoted here,olletively, by ⊗.The isomorphism between Einstein addition ⊕E and Möbius addition
⊕M in the ball Vs is surprisingly simple when expressed in gyrolanguage,



158 A. A. Ungarthe language of gyrovetor spaes. As we see from [56, Table 6.1℄, thegyrovetor spae isomorphism between (Vs,⊕E ,⊗) and (Vs,⊕M ,⊗) is givenby the equations
u⊕Ev = 2⊗(1

2⊗u⊕M 1
2⊗v)

u⊕Mv = 1
2⊗(2⊗u⊕E2⊗v)

(45)Following (16), Einstein ooperation, also alled Einstein oaddition, inthe ball is ommutative, given by the equation
u ⊞E v = 2⊗γuu + γvv

γu + γv

(46)for all u,v∈Vs. Clearly, v ⊟E v = 0. Noting the Einstein half,
1
2⊗v = γv

1+γv

v (47)and the salar assoiative law of gyrovetor spaes [56, p. 138℄, it is learfrom (46) � (47) that v ⊞E 0 = v, as expeted.Einstein noted in 1905 that�Das Gesetz vom Parallelogramm der Geshwindigkeiten giltalso nah unserer Theorie nur in erster Annäherung.�A. Einstein [12℄, 1905[Thus the law of veloity parallelogram is valid aording to our theory onlyto a �rst approximation.℄We now see that with our gyrovetor spae approah to hyperboli ge-ometry, Einstein's nonommutative addition ⊕E gives rise to an exat hy-perboli parallelogram addition ⊞E , Fig. 8, whih is ommutative. Theogyrogroup (Vs, ⊞) is thus an important ommutative loop that regulatesalgebraially the hyperboli parallelogram [59℄.An interesting ontrast between Eulidean and hyperboli geometry isthus observed here. In Eulidean geometry and in lassial mehanis vetoraddition oinides with the parallelogram addition law. In ontrast, in hy-perboli geometry and in relativisti mehanis gyrovetor addition, givenby Einstein addition, u⊕Ev, and the gyroparallelogram addition, u ⊞E v in
Vs, are distint. We thus fae the problem of whether the ultimate relativis-ti veloity addition is given by the (i) non-ommutative Einstein veloityaddition law in (43), or by the (ii) ommutative Einstein gyroparallelogram
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◮

◮
◮

A

B

C
D

u

v w
D = (B ⊞ C)⊖A

u = ⊖A⊕B
v = ⊖A⊕C
w = ⊖A⊕D

u ⊞ v = w

Figure 8. The Einstein gyroparallelogram addition law of relativistically admissible veloci-
ties. LetA, B, C∈R

3

s be any three nongyrocollinear points of an Einstein gyrovector space
(R3

s,⊕,⊗), giving rise to the two gyrovectorsu = ⊖A⊕B andv = ⊖A⊕C. Furthermore,
let D be a point of the gyrovector space such thatABDC is a gyroparallelogram, that is,
D = (B ⊞ C)⊖A. Then, Einstein coaddition ofu andv, u⊞ v = w, obeys the gyroparallelo-
gram law,w = ⊖A⊕D, just as vector addition in(R3, +) obeys the parallelogram law. Einstein
coaddition,⊞, thus gives rise to the gyroparallelogram addition law of Einsteinian velocities,
which is commutative and fully analogous to the parallelogram addition law of Newtonian
velocities.addition law in Fig. 8. Fortunately, a osmi phenomenon that an providethe ultimate resolution of the problem does exist. It is the stellar aberration,illustrated lassially and relativistially for partile aberration in Figs. 9and 10.A osmi experiment in our osmi laboratory, the Universe, that anvalidate the Einstein gyroparallelogram addition law, Fig. 8, and its asso-iated gyrotriangle addition law of Einsteinian veloities shown in Fig. 10,is the stellar aberration [48℄. Stellar aberration is partile aberration wherethe partile is a photon emitted from a star. Partile aberration, in turn,is the hange in the apparent diretion of a moving partile aused by therelative motion between two observers. The ase when the two observersare E (at rest relative to the Earth) and S (at rest relative to the Sun) isshown graphially in Fig. 9 (lassial interpretation) and Fig. 10 (relativistiinterpretation). Obviously, in order to detet stellar aberration there is noneed to plae an observer at rest relative to the Sun sine this e�et variesduring the year. It is this variation that an be observed by observers atrest relative to the Earth.The lassial interpretation of partile aberration is obvious in terms ofthe triangle law of Newtonian veloity addition (whih is the ommon vetoraddition in Eulidean geometry), as demonstrated graphially in Fig. 9. The
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ESQ

P

ps pe

← v

b

a
θs θe

→→

v = −E + S ∈ R
3

+ being a group operation

in (R3,+)

Figure 9. Particle Aberration: Classical in-
terpretation in terms of the triangle law of
addition of Newtonian velocities in the stan-
dard model of 3-dimensional Euclidean geom-
etry (R3, +). Two dimensions are shown for
graphical clarity. Here + is the common vector
addition inR

3.
A particleP moves with Newtonian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Newtonian
velocityv of the SunS relative to the EarthE.
In order to calculate the Newtonian (classical)
particle aberrationθs − θe, the Euclidean tri-
angleESP is augmented into the Euclidean
right-angled triangleEQP , allowing elemen-
tary trigonometry to be employed.
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2+y2 +z2 < ∞. The
coordinates are not shown.
The Euclidity of(R3, +) is determined by the
Euclidean metric in which the distance be-
tween two pointsA, B is ‖ − A + B‖.

ESQ

P

ps pe

← v

b

a
θs θe

→→
v = ⊖E⊕S ∈ R

3
c

⊕ being a loop operation

in (R3
c ,⊕)

Figure 10. Particle Aberration: Relativistic
interpretation in terms of the gyrotriangle law
of addition of Einsteinian velocities in the
Beltrami-Klein ball model of 3-dimensional
hyperbolic geometry(R3

c,⊕). Here⊕ is Ein-
stein addition in thec-ball R3

c ⊂ R
3.

A particleP moves with Einsteinian velocity
pe (ps) relative to the EarthE (the SunS),
making an angleθe (θs) with the Einsteinian
velocityv of the SunS relative to the EarthE.
In order to calculate the relativistic particle
aberrationθs − θe, the gyrotriangleESP

is augmented into the right-gyroangled gy-
rotriangle EQP , allowing elementary gy-
rotrigonometry to be employed [62].
Points are given by their orthogonal Cartesian
coordinates(x, y, z), x2 +y2 +z2 < c2. The
coordinates are not shown.
The hyperbolicity of(R3

c,⊕) is determined by
the hyperbolic gyrometric in which the dis-
tance between two pointsA,B is given by
‖⊖A⊕B‖.relativisti interpretation of partile aberration is, however, less obvious.Relativisti partile aberration is illustrated in Fig. 10 in terms of analo-gies that it shares with its lassial interpretation in Fig. 9. These analogiesare just analogies that gyroommutative gyrogroups share with ommuta-tive groups and gyrovetor spaes share with vetor spaes. Remarkably,the resulting expressions that desribe the relativisti stellar aberration phe-nomenon, obtained by our gyrovetor spae approah, agree with expres-sions that are obtained in the literature by employing the relativisti Lorentztransformation group. Our gyrovetor spae approah is thus apable of re-overing known results in astrophysis, to whih it gives new geometri



Gyrogroups, the grouplike loops 161interpretations that are analogous to known, lassial interpretations.8. Dark matter of the universeWhat is the universe made of? We do not know. If stan-dard gravitational theory is orret, then most of the matterin the universe is in an unidenti�ed form that does not emitenough light to have been deteted by urrent instrumenta-tion. Astronomers and physiists are ollaborating on analyzingthe harateristis of this dark matter and in exploring possiblephysis or astronomial andidates for the unseen material.S. Weinberg and J. Bahall [4, p. v℄Fortunately, our gyrovetor spae approah is apable of disovering anovel result in astrophysis as well, proposing a viable mehanism for theformation of the dark matter of the Universe.We have seen in Se. 8 that the osmi e�et of stellar aberration sup-ports our gyrovetor gyrospae approah guided by analogies that it shareswith the ommon vetor spae approah. Another osmi e�et that maysupport a relativisti physial novel result obtained by our gyrovetor spaeapproah to Einstein's speial theory of relativity is related to the elusiverelativisti enter of mass. The di�ulties in attempts to obtain a satis-fatory relativisti enter of mass de�nition were disussed by Born andFuhs in 1940 [7℄, but they did not propose a satisfatory de�nition. Para-doxially, �In relativity, in ontrast to Newtonian mehanis, the entre ofmass of a system is not uniquely determined�, as Rindler stated with a sup-porting example [44, p. 89℄. Indeed, in 1948 M.H.L. Prye [41℄ reahed theonlusion that �there appears to be no wholly satisfatory de�nition of the[relativisti℄ mass-entre.� Subsequently, Prye's onlusion was on�rmedby many authors who proposed various de�nitions for the relativisti enterof mass; see for instane [3, 17, 32℄ and referenes therein, where variousapproahes to the onept of the relativisti enter of mass are studied.Consequently, Goldstein stated that �a meaningful enter-of-mass (some-times alled enter-of-energy) an be de�ned in speial relativity only interms of the angular-momentum tensor, and only for a partiular frame ofreferene.� [18, p. 320℄.Fortunately, the spaetime geometri insight that our novel grouplikeloop approah o�ers enables the elusive �manifestly ovariant� relativisti



162 A. A. Ungarenter of mass of a partile system with proper time to be identi�ed. It turnsout to be analogous to the lassial enter of mass to the mass of whih aspei�ed �titious mass must be added so as to render it �manifestly ovari-ant� with respet to the motions of hyperboli geometry. Spei�ally, let
S = S(mk,vk, Σ0, N), be an isolated system of N noninterating materialpartiles the k-th partile of whih has mass mk > 0 and veloity vk∈R

3
crelative to a rest frame Σ0, k = 1, . . . , N . Then, lassially, the system Sof N partiles an be viewed as a �titious single partile loated at theenter of mass of S, with mass m0 =

∑N
k=1 mk that equals the total massof the onstituent partiles of S. Relativistially, however, symmetries aredetermined by gyrogroup, rather than group, symmetries. As in the lassi-al ounterpart, the system S an be viewed in Einstein's speial theory ofrelativity as a �titious single partile loated at the relativisti enter ofmass of S (spei�ed in [62℄), with mass m0 that we present in (48) below.In order to obey neessary relativisti symmetries, the mass m0 of therelativisti enter of mass of S must exeed, in general, the total mass ofthe onstituent partiles of S aording to the equation

m0 =

√

√

√

√

√

√

(

N
∑

k=1

mk

)2

+ 2
N

∑

j,k=1
j<k

mjmk(γ⊖vj⊕vk
− 1) ≥

N
∑

k=1

mk (48)as explained in [62℄.The additional, �titious mass m0 −
∑N

k=1 mk in (48) of the system Sresults from relative veloities, ⊖vj⊕vk, j, k = 1, . . . , N , between partilesof the system S. The �titious mass of a rigid partile system, therefore,vanishes. The �titious mass of nonrigid galaxies does not vanish and,hene, ould aount for the dark matter needed to gravitationally �glue�eah nonrigid galaxy together.Indeed, the osmi laboratory, our Universe, may support the existeneof the predited �titious mass in (48) as the mass of the dark matter inthe Universe that astrophysiists are fored to postulate but annot detet[4, 34, 10, 37, 49℄. Hene, in order to unover a viable mehanism thataounts for the formation of dark matter that manifests itself only throughgravitational interation, there is no need to modify the laws of physis, asMilgrom proposed in [34℄. Rather, one an �nd it in our grouplike loopapproah that improves our understanding of Einstein's speial theory ofrelativity and its underlying hyperboli geometry of Bolyai and Lobahevsky[62℄.



Gyrogroups, the grouplike loops 1639. The Bloh gyrovetor of QICBloh vetor is well known in the theory of quantum information and om-putation (QIC). We will show that, in fat, Bloh vetor is not a vetorbut, rather, a gyrovetor [9, 54, 55℄. It is easy to predit that in the presenttwenty-�rst entury it is quantum mehanis that will inreasingly in�ueneour lives. Hene, it would be interesting to see what gyrovetor spaes haveto o�er in QIC.A qubit is a two state quantum system ompletely desribed by the qubitdensity matrix ρv,
ρv = 1

2

(

1 + v3 v1 − iv2

v1 + iv2 1− v3

) (49)parametrized by the vetor v = (v1, v2, v3)∈B
3 in the open unit ball B

3 =
R

3
s=1 of the Eulidean 3-spae R

3. The vetor v in the ball is known in QICas the Bloh vetor. However, we will see that it would be more appropriateto all it a gyrovetor rather than a vetor.The density matrix produt of the four density matries in the followingequation, whih are parametrized by two distint Bloh vetors u and v,an be written as a single density matrix parametrized by the Bloh vetor
w, multiplied by the trae of the matrix produt,

ρuρvρvρu = tr[ρuρvρvρu]ρw (50)
u,v∈B

3. Here tr[m] is the trae of a square matrix m, and
w = u⊕M(2⊗v⊕Mu) = 2⊗(u⊕Mv) (51)Identity (51) is one of several identities available in [9, 54, 55℄ that demon-strate the ompatibility of density matrix manipulations and gyrovetorspae manipulations.Two Bloh vetors u and v generate the two density matries ρu and

ρv that, in turn, generate the Bures �delity F(ρu, ρv) that we may alsowrite as F(u,v). The Bures �delity F(u,v) is a most important distanemeasure between quantum states ρu and ρv of the qubit in QIC, given bythe equations
F(u,v) =

[

tr
√√

ρuρv

√
ρu

]2

= 1
2

1 + γu⊕Ev

γuγv

(52)The �rst equation in (52) is well known [38, 67℄, and the seond equation in(52) is a gyrovetor spae equation veri�ed in [56, Eq. 9.69℄. Identity (51)
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s=1,⊕M ,⊗) and in Einstein gyrovetor spaes (R3
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Transversals in latin squares

Ian M. Wanless

Abstract

A latin square of order n is an n × n array of n symbols in which each symbol occurs
exactly once in each row and column. A transversal of such a square is a set of n entries
such that no two entries share the same row, column or symbol. Transversals are closely
related to the notions of complete mappings and orthomorphisms in (quasi)groups, and
are fundamental to the concept of mutually orthogonal latin squares.

Here we provide a brief survey of the literature on transversals. We cover (1) existence
and enumeration results, (2) generalisations of transversals including partial transversals
and plexes, (3) the special case when the latin square is a group table, (4) a connection
with covering radii of sets of permutations. The survey includes a number of conjectures
and open problems.

1. Introduction
A latin square of order n is an n×n array of n symbols in which each symbol
occurs exactly once in each row and in each column. By a diagonal of such
a square we mean a set of entries which contains exactly one representative
of each row and column. A transversal is a diagonal in which no symbol is
repeated.

Historically, interest in transversals arose from the study of orthogonal
latin squares. A pair of latin squares A = [aij ] and B = [bij ] of order n are
said to be orthogonal mates if the n2 ordered pairs (aij , bij) are distinct. It
is simple to see that if we look at all n occurrences of a given symbol in B,
the corresponding positions in A must form a transversal. Indeed,

Theorem 1. A latin square has an orthogonal mate i� it has a decomposi-
tion into disjoint transversals.

2000 Mathematics Subject Classi�cations: 05B15 20N05
Keywords: transversal, partial transversal, Latin square, plex, n-queens, turn-square,
Cayley table, quasigroup, complete mapping, orthomorphism, covering radius
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For example, below there are two orthogonal latin squares of order 8.
Subscripted letters are used to mark the transversals of the left hand square
which correspond to the positions of each symbol in its orthogonal mate (the
right hand square).
1a 2b 3c 4d 5e 6f 7g 8h

7b 8a 5d 6c 2f 4e 1h 3g

2c 1d 6a 3b 4g 5h 8e 7f

8d 7c 4b 5a 6h 2g 3f 1e

4f 3e 1g 2h 7a 8b 5c 6d

6e 5f 7h 8g 1b 3a 2d 4c

3h 6g 2e 1f 8c 7d 4a 5b

5g 4h 8f 7e 3d 1c 6b 2a

a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
f e g h a b c d
e f h g b a d c
h g e f c d a b
g h f e d c b a

(1)

More generally, there is interest in sets of mutually orthogonal latin
squares (MOLS), that is, sets of latin squares in which each pair is or-
thogonal in the above sense. The literature on MOLS is vast (start with
[15, 16, 37]) and provides ample justi�cation for an interest in transversals.
Subsequent investigations have ranged far beyond the initial justi�cation of
Theorem 1 and have proved that transversals are interesting objects in their
own right. Despite this, a number of basic questions about their properties
remain unresolved, as will become obvious in the subsequent pages.

Orthogonal latin squares exist for all orders n 6∈ {2, 6}. For n = 6 there
is no pair of orthogonal squares, but we can get close. Finney [25] gives the
following example which contains 4 disjoint transversals indicated by the
subscripts a, b, c and d.

1a 2 3b 4c 5 6d

2c 1d 6 5b 4a 3
3 4b 1 2d 6c 5a

4 6a 5c 1 3d 2b

5d 3c 2a 6 1b 4
6b 5 4d 3a 2 1c

Table 1 shows the squares of order n, for 4 6 n 6 8, counted according
to their maximum number m of disjoint transversals. The entries in the
table are counts of main classes (A main class, or species is an equivalence
class of latin squares each of which has essentially the same structure. See
[15, 37] for the de�nition.)

Evidence such as that in Table 1 led van Rees [54] to conjecture that,
as n →∞, a vanishingly small proportion of latin squares have orthogonal
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m n = 4 5 6 7 8
0 1 0 6 0 33
1 0 1 0 1 0
2 0 0 2 5 7
3 - 0 0 24 46
4 1 - 4 68 712
5 - 1 - 43 71330
6 - - 0 - 209505
7 - - - 6 -
8 - - - - 2024

Total 2 2 12 147 283657

Table 1: Number m of disjoint transversals in latin squares of order n 6 8.

mates. However, the trend seems to be quite the reverse (see [57]), although
no rigorous way of establishing this has yet been found.

A point that Table 1 raises is that some latin squares have no transver-
sals at all. We now look at some results in this regard.

A latin square of order mq is said to be of q-step type if it can be
represented by a matrix of q × q blocks Aij as follows

A11 A12 · · · A1m

A21 A22 · · · A2m
... ... . . . ...

Am1 Am2 · · · Amm

where each block Aij is a latin subsquare of order q and two blocks Aij and
Ai′j′ contain the same symbols i� i + j ≡ i′ + j′ mod m. The following
classical theorem is due to Maillet [39].

Theorem 2. Suppose that q is odd and m is even. No q-step type latin
square of order mq possesses a transversal.

As we will see in �4, this rules out many group tables having transver-
sals. In particular, no cyclic group of even order has a transversal. By
contrast, there is no known example of a latin square of odd order without
transversals.

Conjecture 1. Each latin square of odd order has at least one transversal.
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This conjecture is known to be true for n 6 9 (see �3). It is attributed
to Ryser [46] and has been open for forty years. In fact, Ryser's original
conjecture was somewhat stronger: for every latin square of order n, the
number of transversals is congruent to n mod 2. In [2], Balasubramanian
proved the even case.

Theorem 3. In any latin square of even order the number of transversals
is even.

Despite this, it has been noted in [8] (and other places) that there are
many counterexamples of odd order to Ryser's original conjecture. Hence
the conjecture has now been weakened to Conjecture 1 as stated. One
obstacle to proving this conjecture was recently revealed in [57].

Theorem 4. For every n > 3 there exists a latin square of order n which
contains an entry that is not included in any transversal.

Given Theorem 1, this latest theorem showed existence for all n > 3 of
a latin square without an orthogonal mate. The same result was obtained
in [24] without showing Theorem 4.

2. Partial transversals
We have seen in �1 that not all latin squares have transversals, which
prompts the question of how close we can get to �nding a transversal in
such cases. We de�ne a partial transversal of length k to be a set of k en-
tries, each selected from di�erent rows and columns of a latin square such
that no two entries contain the same symbol. Note that in some papers
(e.g. [50]) a partial transversal of length k is de�ned slightly di�erently to
be a diagonal on which k di�erent symbols appear.

Since not all squares of order n have a partial transversal of length n
(i.e., a transversal), the best we can hope for is to �nd one of length n− 1.
The following conjecture has been attributed by Brualdi (see [15, p.103]).

Conjecture 2. Every latin square of order n possesses a partial transversal
of length n− 1.

A claimed proof of this conjecture by Derienko [18] contains a fatal
error [8]. Recently, a paper [32] has appeared in the maths arXiv claiming
a proof of Conjecture 2. However, given the history of the problem such a
claim should be treated cautiously, at least until the paper has been refereed.
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The best reliable result to date states that there must be a partial
transversal of length at least n − O(log2 n). This was shown by Shor [50],
and the implicit constant in the `big O ' was very marginally improved by
Fu et al. [26]. Subsequently Hatami and Shor [29] discovered an error in [50]
(duplicated in [26]) and corrected the constant to a higher one. Nonetheless,
the important thing remains that the bound is n−O(log2 n). This improved
on a number of earlier bounds including 2

3n+O(1) (Koksma [35]), 3
4n+O(1)

(Drake [19]) and n−√n (Brouwer et al. [4] and Woolbright [59]).
Erd®s and Spencer [21] showed that any n× n array in which no entry

occurs more than (n − 1)/16 times has a transversal (in the sense of a
diagonal with n di�erent symbols on it). It has also been shown by Cameron
and Wanless [8] that every latin square possesses a diagonal in which no
symbol appears more than twice.

Conjecture 2 has been well known and open for decades. A much sim-
pler problem is to consider the shortest possible length of a maximal partial
transversal (maximal in the sense that it is contained in no partial transver-
sal of greater length). It is easy to see that no partial transversal of length
strictly less than 1

2n can be maximal, since there are not enough `used'
symbols to �ll the submatrix formed by the `unused' rows and columns.
However, for all n > 4, maximal partial transversals of length

⌈
1
2n

⌉
can

easily be constructed using a square of order n which contains a subsquare
S of order

⌊
1
2n

⌋
and a partial transversal containing the symbols of S but

not using any of the same rows or columns as S.

3. Number of transversals
In this section we consider the question of how many transversals a latin
square can have. We de�ne t(n) and T (n) to be respectively the minimum
and maximum number of transversals among the latin squares of order n.

We have seen in �1 that some latin squares have no transversals but
it is not settled for which orders such latin squares exist. Thus for lower
bounds on t(n) we cannot do any better than to observe that t(n) > 0, with
equality occurring at least when n is even. A related question, for which
no work seems to have been published, is to �nd an upper bound on t(n)
when n is odd.

Turning to the maximum number of transversals, it should be clear
that T (n) 6 n! since there are only n! di�erent diagonals. An exponential
improvement on this trivial bound was obtained by McKay et al. [42]:
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Theorem 5. For n > 5,

15n/5 6 T (n) 6 cn√n n!

where c =
√

3−√3
6 e

√
3/6 ≈ 0.61354.

The lower bound in Theorem 5 is very simple and would not be too dif-
�cult to improve. The upper bound took considerably more work, although
it too is probably far from the truth.

In the same paper the authors reported the results of an exhaustive
computation of the transversals in latin squares of orders up to and including
9. Table 2 lists the minimum and maximum number of transversals over all
latin squares of order n for n 6 9, and the mean and standard deviation to
2 decimal places.

n t(n) Mean Std Dev T (n)
2 0 0 0 0
3 3 3 0 3
4 0 2 3.46 8
5 3 4.29 3.71 15
6 0 6.86 5.19 32
7 3 20.41 6.00 133
8 0 61.05 8.66 384
9 68 214.11 15.79 2241

Table 2: Transversals in latin squares of order n 6 9.

Table 2 con�rms Conjecture 1 for n 6 9. The following semisymmetric
squares (see [15] for a de�nition of semisymmetric) are representatives of
the unique main class with t(n) transversals for n ∈ {5, 7, 9}. In each case
the largest subsquares are shown in bold.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1

3 2 1 5 4 7 6
2 1 3 6 7 4 5
1 3 2 7 6 5 4
5 6 7 4 1 2 3
4 7 6 1 5 3 2
7 4 5 2 3 6 1
6 5 4 3 2 1 7

2 1 3 6 7 8 9 5 4
1 3 2 5 4 9 6 7 8
3 2 1 4 9 5 7 8 6
9 5 4 3 2 1 8 6 7
8 4 6 2 5 7 1 9 3
4 7 9 8 3 6 5 1 2
5 8 7 9 6 2 3 4 1
6 9 8 7 1 4 2 3 5
7 6 5 1 8 3 4 2 9
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n Lower Bound Upper Bound
10 5504 75000
11 37851 528647
12 198144 3965268
13 1030367 32837805
14 3477504 300019037
15 36362925 2762962210
16 244744192 28218998328
17 1606008513 300502249052
18 6434611200 3410036886841
19 87656896891 41327486367018
20 697292390400 512073756609248
21 5778121715415 6803898881738477

Table 3: Bounds on T (n) for 10 6 n 6 21.

In Table 3 we reproduce from [42] bounds on T (n) for 10 6 n 6 21. The
upper bound is somewhat sharper than that given by Theorem 5, though
proved by the same methods. The lower bound in each case is constructive
and likely to be very close to the true value. When n 6≡ 2 mod 4 the
lower bound comes from the group with the highest number of transversals
(see Table 4). When n ≡ 2 mod 4 the lower bound comes from a so-
called turn-square, many of which were analysed in [42]. A turn-square is
obtained by starting with the Cayley table of a group (typically a group of
the form Z2⊕Zm for some m) and �turning� some of the intercalates (that
is, replacing a subsquare of order 2 by the other possible subsquare on the
same symbols). For example,

5 6 2 3 4 0 1 7 8 9
6 2 3 4 0 1 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8
0 1 7 8 9 5 6 2 3 4
1 7 8 9 5 6 2 3 4 0
7 8 9 5 6 2 3 4 0 1
8 9 5 6 7 3 4 0 1 2
9 5 6 7 8 4 0 1 2 3

(2)

achieves 5504 transversals. The `turned' entries have been marked in bold.
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The study of turn-squares was pioneered by Parker (see [5] and the refer-
ences therein) in his unsuccessful quest for a triple of MOLS of order 10.
He noticed that turn-squares often have many more transversals than is
typical for squares of their order, and used this as a heuristic in the search
for MOLS.

It is has long been suspected that T (10) is achieved by (2). This sus-
picion was strengthened by McKay et al. [41] who examined several billion
squares of order 10, including every square with a non-trivial symmetry, and
found none had more than 5504 transversals. Parker was indeed right that
the square (2) is rich in orthogonal mates (it has 12265168 of them [38],
which is an order of magnitude greater than he estimated). However, using
the number of transversals as a heuristic in searching for MOLS is not fail-
safe. For example, the turn-square of order 14 with the most transversals
(namely, 3477504) does not have any orthogonal mates [42]. Meanwhile
there are squares of order n with orthogonal mates but which possess only
the bare minimum of n transversals (the left hand square in (1) is one such).

Nevertheless, the number of transversals does provide a useful invariant
for squares of small orders where this number can be computed in reason-
able time (see, for example, [34] and [55]). It is straightforward to write a
backtracking algorithm to count transversals in latin squares of small order,
though this method currently becomes impractical if the order is much over
20. See [30], [31] for some algorithms and complexity theory results on the
problem of counting transversals.

It seems very di�cult to �nd theoretical estimates for the number of
transversals (unless, of course, that number is zero). This di�culty is so
acute that there are not even good estimates for zn, the number of transver-
sals of the cyclic group of order n. Vardi [52] makes the following prediction:

Conjecture 3. There exist real constants 0 < c1 < c2 < 1 such that

cn
1n! 6 zn 6 cn

2n!

for all odd n > 3.

Vardi makes this conjecture while considering a variation on the toroidal
n-queens problem. The toroidal n-queens problem is that of determining in
how many di�erent ways n non-attacking queens can be placed on a toroidal
n× n chessboard. Vardi considered the same problem using semiqueens in
place of queens, where a semiqueen is a piece which moves like a toroidal
queen except that it cannot travel on right-to-left diagonals. The solution to
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Vardi's problem provides an upper bound on the toroidal n-queens problem.
The problem can be translated into one concerning latin squares by noting
that every con�guration of n non-attacking semiqueens on a toroidal n× n
chessboard corresponds to a transversal in a cyclic latin square L of order
n, where Lij ≡ i − j mod n. Note that the toroidal n-queens problem is
equivalent to counting diagonals which simultaneously yield transversals in
L and L′, where L′ij = i + j mod n.

As a corollary of Theorem 5 we can infer that the upper bound in Con-
jecture 3 is true (asymptotically) with c2 = 0.614. This also yields an
upper bound for the number of solutions to the toroidal n-queens prob-
lem. Theorem 5 is valid for all latin squares, but Conjecture 3 has also
been attacked by methods which are speci�c to the cyclic square. Cooper
and Kovalenko [12] �rst showed that Vardi's upper bound is asymptotically
true with c2 = 0.9153, and this was then improved to c = 1/

√
2 ≈ 0.7071

in [36]. Finding a lower bound of the form given in Conjecture 3 is still an
open problem. However, [10] and [45] do give some lower bounds, each of
which applies only for some n. Cooper et al. [11] estimated that perhaps
the correct rate of growth for zn is around 0.39n n!.

4. Finite Groups
By using the symbols of a latin square to index its rows and columns, each
latin square can be interpreted as the Cayley table of a quasigroup. In
this section we consider the important special case when that quasigroup is
associative; in other words, it is a group.

Much of the study of transversals in groups has been phrased in terms of
the equivalent concepts of complete mapping and orthomorphisms. Mann
[40] introduced complete mappings for groups, but their de�nition works
just as well for quasigroups. It is this: a permutation θ of the elements
of a quasigroup (Q,⊕) is a complete mapping if η : Q 7→ Q de�ned by
η(x) = x ⊕ θ(x) is also a permutation. The permutation η is known as an
orthomorphism of (Q,⊕), following terminology introduced in [33]. All of
the results of this paper could be rephrased in terms of complete mappings
and/or orthomorphisms because of our next observation.

Theorem 6. Let (Q,⊕) be a quasigroup and LQ its Cayley table. Then
θ : Q 7→ Q is a complete mapping i� we can locate a transversal of LQ by
selecting, in each row x, the entry in column θ(x). Similarly, η : Q 7→ Q
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is an orthomorphism i� we can locate a transversal of LQ by selecting, in
each row x, the entry containing symbol η(x).

Having noted that transversals, complete mappings and orthomorphisms
are essentially the same thing, we will adopt the practice of expressing our
results in terms of transversals even when the original authors used one of
the other notions.

As mentioned, this section is devoted to the case when our latin square
is LG, the Cayley table of a �nite group G. The extra structure in this
case allows for much stronger results. For example, suppose we know of a
transversal of LG that comprises a choice from each row i of an element
gi. Let g be any �xed element of G. Then if we select from each row i
the element gig this will give a new transversal and as g ranges over G the
transversals so produced will be mutually disjoint. Hence

Theorem 7. If LG has a single transversal then it has a decomposition
into disjoint transversals.

We saw in �1 that the question of which latin squares have transversals
has not been settled. The same is true for group tables, but we are getting
much closer to answering the question, building on the pioneering work of
Hall and Paige.

Consider the following �ve propositions:

(i) LG has a transversal.

(ii) LG can be decomposed into disjoint transversals.

(iii) There exists a latin square orthogonal to LG.

(iv) There is some ordering of the elements of G, say a1, a2, . . . , an, such
that a1a2 · · · an = ε, where ε denotes the identity element of G.

(v) The Sylow 2-subgroups of G are trivial or non-cyclic.

The fact that (i), (ii) and (iii) are equivalent comes directly from The-
orem 1 and Theorem 7. Paige [43] showed that (i) implies (iv). Hall and
Paige [28] then showed that (iv) implies (v). They also showed that (v) im-
plies (i) if G is a soluble, symmetric or alternating group. They conjectured
that (v) is equivalent to (i) for all groups.
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It was subsequently noted in [17] that both (iv) and (v) hold for all
non-soluble groups, which proved that (iv) and (v) are equivalent. A much
more direct and elementary proof of this fact was given in [53].

To summarise:

Theorem 8. (i) ⇐⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v).

Conjecture 4. (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v).

As mentioned above, Conjecture 4 is known to be true for all solu-
ble, symmetric and alternating groups. It has also been shown for many
other groups including the linear groups GL(2, q), SL(2, q), PGL(2, q) and
PSL(2, q) (see [23] and the references therein).

After decades of incremental progress on Conjecture 4 there has recently
been what would appear to be a very signi�cant breakthrough. In a preprint
Wilcox [58] has claimed to reduce the problem to showing it for the sporadic
simple groups (of which the Mathieu groups have already been handled in
[13]). See [15], [22] or [58] for further reading and references on the Hall-
Paige conjecture.

An immediate corollary of the proof of Theorem 7 is that for any G the
number of transversals through a given entry of LG is independent of the
entry chosen. Hence (see Theorem 3.5 of [16]) we get:

Theorem 9. The number of transversals in LG is divisible by |G|, the order
of G.

McKay et al. [42] also showed the following simple results, in the spirit
of Theorem 3:

Theorem 10. The number of transversals in any symmetric latin square
of order n is congruent to n modulo 2.

Corollary 1. Let G be a group of order n. If G is abelian or n is even
then the number of transversals in G is congruent to n modulo 2.

Corollary 1 cannot be generalised to non-abelian groups of odd order,
given that the non-abelian group of order 21 has 826814671200 transversals.

Theorem 11. If G is a group of order n 6≡ 1 mod 3 then the number of
transversals in G is divisible by 3.
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We will see below that the cyclic groups of small orders n ≡ 1 mod 3
have a number of transversals which is not a multiple of three.

The semiqueens problem in �3 led to an investigation of zn, the number
of transversals in the cyclic group of order n. Let z′n = zn/n denote the
number of transversals through any given entry of the cyclic square of or-
der n. Since zn = z′n = 0 for all even n by Theorem 8 we shall assume for
the following discussion that n is odd.

The initial values of z′n are known from [47] and [48]. They are z′1 = z′3 =
1, z′5 = 3, z′7 = 19, z′9 = 225, z′11 = 3441, z′13 = 79259, z′15 = 2424195, z′17 =
94471089, z′19 = 4613520889, z′21 = 275148653115, z′23 = 19686730313955
and z′25 = 1664382756757625. Interestingly, if we take these numbers mod-
ulo 8 we �nd that this sequence begins 1,1,3,3,1,1,3,3,1,1,3,3,1. We know
from Theorem 10 that z′n is always odd for odd n, but it is an open ques-
tion whether there is any deeper pattern modulo 4 or 8. We also know from
Theorem 11 that z′n is divisible by 3 when n ≡ 2 mod 3. The initial terms
of {z′n mod 3} are 1,1,0,1,0,0,2,0,0,1,0,0,2.

An interesting fact about zn is that it is the number of diagonally cyclic
latin squares of order n (in other words, the number of quasigroups on the
set {1, 2, . . . , n} which have the transitive automorphism (123 · · ·n)). See
[56] for a survey on such objects.

We now discuss the number of transversals in general groups of small
order. For groups of order n ≡ 2 mod 4 there can be no transversals,
by Theorem 8. For each other order n 6 23 the number of transversals
in each group is given in Table 4. The groups are ordered according to
the catalogue of Thomas and Wood [51]. The numbers of transversals in
abelian groups of order at most 16 and cyclic groups of order at most 21
were obtained by Shieh et al [49]. The remaining values in Table 4 were
computed by Shieh [47]. McKay et al. [42] then independently con�rmed all
counts except those for cyclic groups of order > 21, correcting one misprint
in Shieh [47].

Bedford and Whitaker [3] o�er an explanation for why all the non-cyclic
groups of order 8 have 384 transversals. The groups of order 4, 9 and 16
with the most transversals are the elementary abelian groups of those orders.
Similarly, for orders 12, 20 and 21 the group with the most transversals is the
direct sum of cyclic groups of prime order. It is an open question whether
such a statement generalises to all n.

By Corollary 1 we know that in each case covered by Table 4 (except
the non-abelian group of order 21), the number of transversals must have
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n Number of transversals in groups of order n

3 3
4 0, 8
5 15
7 133
8 0, 384, 384, 384, 384
9 2025, 2241

11 37851
12 0, 198144, 76032, 46080, 0
13 1030367
15 36362925
16 0, 235765760, 237010944, 238190592, 244744192, 125599744,

121143296, 123371520, 123895808, 122191872, 121733120,
62881792, 62619648, 62357504

17 1606008513
19 87656896891
20 0, 697292390400, 140866560000, 0, 0
21 5778121715415, 826814671200
23 452794797220965

Table 4: Transversals in groups of order n 6 23.

the same parity as the order of the square. It is remarkable though, that
the groups of even order have a number of transversals which is divisible by
a high power of 2. Indeed, any 2-group of order n 6 16 has a number of
transversals which is divisible by 2n−1. It would be interesting to know if
this is true for general n.

5. Generalised transversals

There are several ways to generalise the notion of a transversal. We have
already seen one of them, namely the partial transversals in �2. In this
section we collect results on another generalisation, namely plexes.

A k-plex in a latin square of order n is a set of kn entries which includes
k representatives from each row and each column and of each symbol. A
transversal is a 1-plex. The marked entries form a 3-plex in the following
square:
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1∗ 2 3 4∗ 5 6∗

2∗ 1 4 3∗ 6∗ 5
3 5∗ 1 6 2∗ 4∗

4 6 2∗ 5 3∗ 1∗

5∗ 4∗ 6∗ 2 1 3
6 3∗ 5∗ 1∗ 4 2

(3)

The name k-plex was coined in [55] only recently. It is a natural extension
of the names duplex, triplex, and quadruplex which have been in use for
many years (principally in the statistical literature, such as [25]) for 2, 3
and 4-plexes.

The entries not included in a k-plex of a latin square L of order n form
an (n − k)-plex of L. Together the k-plex and its complementary (n − k)-
plex are an example of what is called an orthogonal partition of L. For
discussion of orthogonal partitions in a general setting see Gilliland [27]
and Bailey [1]. For our purposes, if L is decomposed into disjoint parts K1,
K2, . . . , Kd where Ki is a ki-plex then we call this a (k1, k2, . . . , kd)-partition
of L. A case of particular interest is when all parts are the same size, k. We
call such a partition a k-partition. For example, the marked 3-plex and its
complement form a 3-partition of the square in (3). By Theorem 1, �nding
a 1-partition of a square is equivalent to �nding an orthogonal mate.

Some results about transversals generalise directly to other plexes, while
others seem to have no analogue. Theorem 3 and Theorem 7 seem to be in
the latter class, as observed in [42] and [55] respectively. However, Theorems
2 and 8 showed that not every square has a transversal, and exactly the same
arguments work for any k-plex where k is odd [55].

Theorem 12. Suppose that q and k are odd integers and m is even. No
q-step type latin square of order mq possesses a k-plex.

Theorem 13. Let G be a group of �nite order n with a non-trivial cyclic
Sylow 2-subgroup. The Cayley table of G contains no k-plex for any odd k
but has a 2-partition and hence contains a k-plex for every even k in the
range 0 6 k 6 n.

The situation for even k is quite di�erent to the odd case. Rodney [9,
p.105] conjectures that every latin square has a duplex. This conjecture was
strengthened in [55] to the following:
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Conjecture 5. Every latin square has the maximum possible number of
disjoint duplexes. In particular, every latin square of even order has a 2-
partition and every latin square of odd order has a (2, 2, 2, . . . , 2, 1)-partition.

Note that this conjecture also strengthens Conjecture 1. It also implies
that every latin square has k-plexes for every even value of k up to the order
of the square.

Conjecture 5 is true for all latin squares of orders 6 8 and for all soluble
groups (see [53, 55]). Depending on whether a soluble group has a non-
trivial cyclic Sylow 2-subgroup, it either has a k-plex for all possible k, or
has them for all possible even k but no odd k. If the Hall-Paige conjecture
could be proved it would completely resolve the existence question of plexes
in groups, and these would remain the only two possibilities. It is worth
noting that other scenarios occur for latin squares which are not based on
groups. For example, the square in (3) has no transversal but clearly does
have a 3-plex. It is conjectured in [55] that there exist arbitrarily large latin
squares of this type.

Conjecture 6. For all even n > 4 there exists a latin square of order n
which has no transversal but does contain a 3-plex.

Another possibility was shown by a family of squares constructed in [20].

Theorem 14. For all even n there exists a latin square of order n which
has k-plexes for every odd value of k between 1

4n − 1
2 and 3

4n + 1
2 , but not

for any odd value of k outside this range.

Interestingly, there is no known example of odd integers a < b < c and
a latin square which has an a-plex and a c-plex but no b-plex.

The union of an a-plex and a disjoint b-plex of a latin square L is an
(a + b)-plex of L. However, it is not always possible to split an (a + b)-plex
into an a-plex and a disjoint b-plex. Consider a duplex which consists of
1
2n disjoint intercalates (latin subsquares of order 2). Such a duplex does
not contain a partial transversal of length more than 1

2n, so it is a long way
from containing a 1-plex.

We say that a k-plex is indivisible if it contains no c-plex for 0 < c < k.
The duplex just described is indivisible. Indeed, for every k there is a
indivisible k-plex in some su�ciently large latin square. This was �rst
shown in [55], but �su�ciently large� in that case meant quadratic in k.
This was improved to linear in [6] as a corollary of the following result.
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Theorem 15. For every k > 2 there exists a latin square of order 2k which
contains two disjoint indivisible k-plexes.

Theorem 15 means that some squares can be split in �half� in a way that
makes no further division possible. Experience with latin squares suggests
that they generally have a vast multitude of partitions into various plexes,
which in one sense means that latin squares tend to be a long way from
being indivisible. This makes Theorem 15 slightly surprising.

It is a wide open question for what values of k and n there is a latin
square of order n containing an indivisible k-plex. However, Bryant et al. [6]
found the answer when k is small relative to n.

Theorem 16. Let n and k be positive integers satisfying 5k 6 n. Then
there exists a latin square of order n containing an indivisible k-plex.

So far we have essentially looked at questions where we start with a
latin square and ask what sort of plexes it might have. To complete the
section we consider the reverse question. We want to start with a plex and
ask what latin squares it might be contained in. Strictly speaking this is
a silly question, since we de�ned a plex in terms of its host latin square,
which therefore is the only possible answer. However, suppose we de�ne a
k-homogeneous partial latin square of order n to be an n×n array in which
each cell is either blank or �lled (the latter meaning that it contains one of
{1, 2, . . . , n}), and which has the properties that (i) no symbol occurs twice
within any row or column, (ii) each symbol occurs k times in the array,
(iii) each row and column contains exactly k �lled cells. (The standard
de�nition of a homogeneous partial latin square is slightly more general.
However, once empty rows and columns have been deleted, it agrees with
ours.) We can then sensibly ask whether this k-homogeneous partial latin
square is a k-plex. If it is then we say the partial latin square is completable
because the blank entries can be �lled in to produce a latin square.

Theorem 17. If 1 < k < n and k > 1
4n then there exists a k-homogeneous

partial latin square of order n which is not completable.

Burton [7], and Daykin and Häggkvist [14] independently conjecture
that if k 6 1

4n then every k-homogeneous partial latin square is com-
pletable. It seems certain that for k su�ciently small relative to n, every
k-homogeneous partial latin square is completable. This has already been
proved when n ≡ 0 mod 16 in [14]. The following partial extension result
due to Burton [7]0 also seems relevant.
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Theorem 18. For k 6 1
4n every k-homogeneous partial latin square of order

n is contained in a (k +1)-homogeneous partial latin square of order n.

6. Covering radii for sets of permutations
A novel approach to Conjecture 1 and Conjecture 2 has recently been opened
up by Andre Kézdy and Hunter Snevily. To explain this interesting new
approach, we need to introduce some terminology.

Consider the symmetric group Sn as a metric space equipped with Ham-
ming distance. That is, the distance between two permutations g, h ∈ Sn is
the number of points at which they disagree (n minus the number of �xed
points of gh−1). Let P be a subset of Sn. The covering radius cr(P ) of P
is the smallest r such that the balls of radius r with centres at the elements
of P cover the whole of Sn. In other words every permutation is within
distance r of some member of P , and r is chosen to be minimal with this
property.

Theorem 19. Let P ⊆ Sn be a set of permutations. If |P | 6 n/2, then
cr(P ) = n. However, there exists P with |P | = bn/2c+1 and cr(P ) < n.

This result raises an obvious question. Given n and s, what is the
smallest m such that there is a set S of permutations with |S| = m and
cr(S) 6 n− s? We let f(n, s) denote this minimum value m. This problem
can also be interpreted in graph-theoretic language. De�ne the graph Gn,s

on the vertex set Sn, with two permutations being adjacent if they agree
in at least s places. Now the size of the smallest dominating set in Gn,s is
f(n, s).

Theorem 19 shows that f(n, 1) = bn/2c + 1. Since any two distinct
permutations have distance at least 2, we see that f(n, n−1) = n! for n ≥ 2.
Moreover, f(n, s) is a monotonic increasing function of s (by de�nition).

The next case to consider is f(n, 2). Kézdy and Snevily made the fol-
lowing conjecture in unpublished notes.

Conjecture 7. If n is even, then f(n, 2) = n; if n is odd, then f(n, 2) > n.

The Kézdy�Snevily conjecture has several connections with transver-
sals. The rows of a latin square of order n form a sharply transitive set of
permutations (that is, for any i and j, exactly one permutation carries i to
j); and every sharply transitive set is the set of rows of a latin square.
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Theorem 20. Let S be a sharply transitive subset of Sn. Then S has
covering radius at most n− 1, with equality if and only if the corresponding
latin square has a transversal.
Corollary 2. If there exists a latin square of order n with no transversal,
then f(n, 2) 6 n. In particular, this holds for n even.

Hence Conjecture 7 implies Conjecture 1, as Kézdy and Snevily ob-
served. In fact a stronger result holds:
Theorem 21. If S is the set of rows of a latin square L of order n with no
transversal, then S has covering radius n− 2.

The following result is due to Kézdy and Snevily. See [8] for a proof.
Theorem 22. Conjecture 7 implies Conjecture 2.

In other words, to solve the longstanding Ryser and Brualdi conjectures
it may su�ce to answer this: How small can we make a subset S ⊂ Sn which
has the property that every permutation in Sn agrees with some member
of S in at least two places?

In Corollary 2 we used latin squares to �nd an upper bound for f(n, 2)
when n is even. For odd n we can also �nd upper bounds based on latin
squares. The idea is to choose a latin square with few transversals, or whose
transversals have a particular structure, and add a small set of permutations
meeting each transversal twice. For n = 5, 7, 9, we now give a latin square
for which a single extra permutation su�ces, showing that f(n, 2) 6 n + 1
in these cases.

1 2 3 4 5
2 1 4 5 3
3 5 1 2 4
4 3 5 1 2
5 4 2 3 1
1 3 4 2 5

1 2 3 4 5 6 7
2 3 1 5 4 7 6
3 1 2 6 7 4 5
4 5 6 7 1 2 3
5 4 7 1 6 3 2
6 7 4 2 3 5 1
7 6 5 3 2 1 4
3 2 1 7 6 5 4

1 3 2 4 6 5 7 9 8
2 1 3 5 4 6 8 7 9
3 2 1 7 9 8 4 6 5
4 6 5 9 8 7 1 3 2
5 4 6 8 7 9 3 2 1
6 5 4 2 1 3 9 8 7
7 9 8 1 3 2 5 4 6
8 7 9 3 2 1 6 5 4
9 8 7 6 5 4 2 1 3
5 4 6 1 3 2 9 8 7

In general, we have the following:
Theorem 23. f(n, 2) 6 4

3n + O(1) for all n.
The reader is encouraged to seek out [8] and the survey by Quistor� [44]

for more information on covering radii for sets of permutations.
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7. Concluding Remarks
We have only been able to give the briefest of overviews of the fascinating
subject of transversals in this survey. Space constraints have forced the
omission of much worthy material, including proofs of the theorems quoted.
However, even this brief skim across the surface has shown that many basic
questions remain unanswered and much work remains to be done.
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